Activity

  • Wollesen posted an update 7 months, 2 weeks ago

    In the nuclear pore complex, intrinsically disordered nuclear pore proteins (FG Nups) form a selective barrier for transport into and out of the cell nucleus, in a way that remains poorly understood. The collective FG Nup behavior has long been conceptualized either as a polymer brush, dominated by entropic and excluded-volume (repulsive) interactions, or as a hydrogel, dominated by cohesive (attractive) interactions between FG Nups. Here we compare mesoscale computational simulations with a wide range of experimental data to demonstrate that FG Nups are at the crossover point between these two regimes. Specifically, we find that repulsive and attractive interactions are balanced, resulting in morphologies and dynamics that are close to those of ideal polymer chains. We demonstrate that this property of FG Nups yields sufficient cohesion to seal the transport barrier, and yet maintains fast dynamics at the molecular scale, permitting the rapid polymer rearrangements needed for transport events.Green algae of the Volvocine lineage, spanning from unicellular Chlamydomonas to vastly larger Volvox, are models for the study of the evolution of multicellularity, flagellar dynamics, and developmental processes. Phototactic steering in these organisms occurs without a central nervous system, driven solely by the response of individual cells. All such algae spin about a body-fixed axis as they swim; directional photosensors on each cell thus receive periodic signals when that axis is not aligned with the light. The flagella of Chlamydomonas and Volvox both exhibit an adaptive response to such signals in a manner that allows for accurate phototaxis, but in the former the two flagella have distinct responses, while the thousands of flagella on the surface of spherical Volvox colonies have essentially identical behavior. The planar 16-cell species Gonium pectorale thus presents a conundrum, for its central 4 cells have a Chlamydomonas-like beat that provide propulsion normal to the plane, while its 12 peripheral cells generate rotation around the normal through a Volvox-like beat. Here we combine experiment, theory, and computations to reveal how Gonium, perhaps the simplest differentiated colonial organism, achieves phototaxis. High-resolution cell tracking, particle image velocimetry of flagellar driven flows, and high-speed imaging of flagella on micropipette-held colonies show how, in the context of a recently introduced model for Chlamydomonas phototaxis, an adaptive response of the peripheral cells alone leads to photoreorientation of the entire colony. The analysis also highlights the importance of local variations in flagellar beat dynamics within a given colony, which can lead to enhanced reorientation dynamics.Preferential attachment drives the evolution of many complex networks. Its analytical studies mostly consider the simplest case of a network that grows uniformly in time despite the accelerating growth of many real networks. Motivated by the observation that the average degree growth of nodes is time invariant in empirical network data, we study the degree dynamics in the relevant class of network models where preferential attachment is combined with heterogeneous node fitness and aging. We propose an analytical framework based on the time invariance of the studied systems and show that it is self-consistent only for two special network growth forms the uniform and the exponential network growth. Conversely, the breaking of such time invariance explains the winner-takes-all effect in some model settings, revealing the connection between the Bose-Einstein condensation in the Bianconi-Barabási model and similar gelation in superlinear preferential attachment. Aging is necessary to reproduce realistic node degree growth curves and can prevent the winner-takes-all effect under weak conditions. Our results are verified by extensive numerical simulations.We theoretically design a kind of diffusion bistability (and even multistability) in the macroscopic scale, which has a similar phenomenon but different underlying mechanism from its microscopic counterpart [Phys. Rev. Lett. 101, 267203 (2008)10.1103/PhysRevLett.101.267203]; the latter has been extensively investigated in literature, e.g., for building nanometer-scale memory components. By introducing second- and third-order nonlinear terms (that opposite in sign) into diffusion coefficient matrices, a bistable energy or mass diffusion occurs with two different steady states identified as “0” and “1.” In particular, we study heat conduction in a two-terminal three-body system and show that this bistable system exhibits a macroscale thermal memory effect with tailored nonlinear thermal conductivities. The theoretical analysis is confirmed by finite-element simulations. Also, we suggest experiments with metamaterials based on shape memory alloys. This theoretical framework blazes a trail on constructing intrinsic bistability or multistability in diffusive systems for macroscopic energy or mass management.Prediction in complex systems at criticality is believed to be very difficult, if not impossible. Of particular interest is whether earthquakes, whose distribution follows a power-law (Gutenberg-Richter) distribution, are in principle unpredictable. selleck compound We study the predictability of event sizes in the Olmai-Feder-Christensen model at different proximities to criticality using a convolutional neural network. The distribution of event sizes satisfies a power law with a cutoff for large events. We find that predictability decreases as criticality is approached and that prediction is possible only for large, nonscaling events. Our results suggest that earthquake faults that satisfy Gutenberg-Richter scaling are difficult to forecast.Multiple organs in a living system respond to environmental changes, and the signals from the organs regulate the physiological environment. Inspired by this biological feedback, we propose a simple autonomous system of active rotators to explain how multiple units are synchronized under a fluctuating environment. We find that the feedback via an environment can entrain rotators to have synchronous phases for specific conditions. This mechanism is markedly different from the simple entrainment by a common oscillatory external stimulus that is not interacting with systems. We theoretically examine how the phase synchronization depends on the interaction strength between rotators and environment. Furthermore, we successfully demonstrate the proposed model by realizing an analog electric circuit with microelectronic devices. This bioinspired platform can be used as a sensor for monitoring varying environments and as a controller for amplifying signals by their feedback-induced synchronization.

Skip to toolbar