Activity

  • Ahmed posted an update 7 months, 2 weeks ago

    In conclusion, all Ent+ or m-Ent+ strain genotypes of the E. faecium/durans group, except for the cyl-positive E. durans KE108, were safe for use as adjunct cultures in traditional Greek cheeses. Further in situ biotechnological evaluations of the strains in real cheese-making trials are required.Human diseases range from gene-associated to gene-non-associated disorders, including age-related diseases, neurodegenerative, neuromuscular, cardiovascular, diabetic diseases, neurocognitive disorders and cancer. Mitochondria participate to the cascades of pathogenic events leading to the onset and progression of these diseases independently of their association to mutations of genes encoding mitochondrial protein. Under physiological conditions, the mitochondrial ATP synthase provides the most energy of the cell via the oxidative phosphorylation. Alterations of oxidative phosphorylation mainly affect the tissues characterized by a high-energy metabolism, such as nervous, cardiac and skeletal muscle tissues. In this review, we focus on human diseases caused by altered expressions of ATP synthase genes of both mitochondrial and nuclear origin. Moreover, we describe the contribution of ATP synthase to the pathophysiological mechanisms of other human diseases such as cardiovascular, neurodegenerative diseases or neurocognitive disorders.Extracellular vesicles (EVs) derived from mesenchymal stem cells isolated from both bone marrow (BMSCs) and adipose tissue (ADSCs) show potential therapeutic effects. These vesicles often show a similar beneficial effect on tissue regeneration, but in some contexts, they exert different biological properties. To date, a comparison of their molecular cargo that could explain the different biological effect is not available. Here, we demonstrated that ADSC-EVs, and not BMSC-EVs, promote wound healing on a murine model of diabetic wounds. Besides a general similarity, the bioinformatic analysis of their protein and miRNA cargo highlighted important differences between these two types of EVs. Molecules present exclusively in ADSC-EVs were highly correlated to angiogenesis, whereas those expressed in BMSC-EVs were preferentially involved in cellular proliferation. Finally, in vitro analysis confirmed that both ADSC and BMSC-EVs exploited beneficial effect on cells involved in skin wound healing such as fibroblasts, keratinocytes and endothelial cells, but through different cellular processes. Consistent with the bioinformatic analyses, BMSC-EVs were shown to mainly promote proliferation, whereas ADSC-EVs demonstrated a major effect on angiogenesis. 10DeacetylbaccatinIII Taken together, these results provide deeper comparative information on the cargo of ADSC-EVs and BMSC-EVs and the impact on regenerative processes essential for diabetic wound healing.C/C composite was brazed to TiAl intermetallic compound using a commercial BNi-2 brazing filler metal under vacuum brazing condition. The brazing temperature was 1030~1150 °C and the holding time was 20 min. The joint interfacial microstructures and mechanical properties were studied, and the fracture behavior and joining mechanism were also investigated. The effect of brazing temperature on the joint shear strength was explored. The results showed that a perfect interface joint can be obtained by using BNi-2 to braze C/C and TiAl. During brazing, Ti, Cr, and other carbide forming elements diffused to C/C composite side, forming Cr3C2, Cr7C3, TiC, and other carbides, and realizing metallurgical joining between the brazing filler metal and C/C composite. The microstructure of the interface of C/C composite and TiAl intermetallic compound joint is as follows TiAl alloy → TiAl + AlNi3 → AlNi2Ti → Ni(s, s) + Ti3Al + Ni3Si → Ni(s, s) + Ni3(Si, B) + CrB → Ni(s, s) + Ni3Si + TiCr2 → (Ti, Cr)C → C/C composite. When the holding time is fixed, with the increase of brazing temperature, the shear strength of the joint increases first and then decreases. The maximum average room temperature shear strength of the brazed joint was 11.62 MPa, while the brazing temperature was 1060 °C and the holding time was 20 min.PGC1α oppositely regulates cancer metastasis in melanoma, breast, and pancreatic cancer; however, little is known about its impact on lung cancer metastasis. Transcriptome and in vivo xenograft analysis show that a decreased PGC1α correlates with the epithelial-mesenchymal transition (EMT) and lung cancer metastasis. The deletion of a single Pgc1α allele in mice promotes bone metastasis of KrasG12D-driven lung cancer. Mechanistically, PGC1α predominantly activates ID1 expression, which interferes with TCF4-TWIST1 cooperation during EMT. Bioinformatic and clinical studies have shown that PGC1α and ID1 are downregulated in lung cancer, and correlate with a poor survival rate. Our study indicates that TCF4-TWIST1-mediated EMT, which is regulated by the PGC1α-ID1 transcriptional axis, is a potential diagnostic and therapeutic target for metastatic lung cancer.Recently developed, nanoscale metal-organic frameworks (nanoMOFs) functionalized with versatile coatings are drawing special attention in the nanomedicine field. Here we show the preparation of core-shell MIL-100(Al) nanoMOFs for the delivery of the anticancer drug doxorubicin (DOX). DOX was efficiently incorporated in the MOFs and was released in a progressive manner, depending on the initial loading. Besides, the coatings were made of biodegradable γ-cyclodextrin-citrate oligomers (CD-CO) with affinity for both DOX and the MOF cores. DOX was incorporated and released faster due to its affinity for the coating material. A set of complementary solid state nuclear magnetic resonance (ssNMR) experiments including 1H-1H and 13C-27Al two-dimensional NMR, was used to gain a deep understanding on the multiple interactions involved in the MIL-100(Al) core-shell system. To do so, 13C-labelled shells were synthesized. This study paves the way towards a methodology to assess the nanoMOF component localization at a molecular scale and to investigate the nanoMOF physicochemical properties, which play a main role on their biological applications.

Skip to toolbar