-
Brogaard posted an update 7 months, 3 weeks ago
A series of related acetylacetonate-carbonyl-rhodium compounds substituted by functionalized phosphines has been prepared in good to excellent yields by the reaction of [Rh(acac)(CO)2] (acac is acetylacetonate) with the corresponding allyl-, cyanomethyl- or cyanoethyl-substituted phosphines. All compounds were fully characterized by 31P, 1H, 13C NMR and IR spectroscopy. The X-ray structures of (acetylacetonato-κ2O,O’)(tert-butylphosphanedicarbonitrile-κP)carbonylrhodium(I), [Rh(C5H7O2)(CO)(C8H13N2)] or [Rh(acac)(CO)(tBuP(CH2CN)2] (2b), (acetylacetonato-κ2O,O’)carbonyl[3-(diphenylphosphanyl)propanenitrile-κP]rhodium(I), [Rh(C5H7O2)(C15H14N)(CO)] or [Rh(acac)(CO)Ph2P(CH2CH2CN)] (2h), and (acetylacetonato-κ2O,O’)carbonyl[3-(di-tert-butylphosphanyl)propanenitrile-κP]rhodium(I), [Rh(C5H7O2)(C11H22N)(CO)] or [Rh(acac)(CO)tBu2P(CH2CH2CN)] (2i), showed a square-planar geometry around the Rh atom with a significant trans influence over the acetylacetonate moiety, evidenced by long Rh-O bond lengths as expected for interactions.The synthesis and structures of three isoxazole-containing Schiff bases are reported, namely, (E)-2-[(isoxazol-3-yl)imino]methylphenol, C10H8N2O2, (E)-2-[(5-methylisoxazol-3-yl)imino]methylphenol, C11H10N2O2, and (E)-2,4-di-tert-butyl-6-[(isoxazol-3-yl)imino]methylphenol, C18H24N2O2. All three structures contain an intramolecular O-H…N hydrogen bond, alongside weaker intermolecular C-H…N and C-H…O contacts. The C-O(H) and imine C=N bond lengths were consistent with structures existing in the enol rather than the keto form. Despite having dihedral angles less then 25°, none of the compounds were observed to be strongly thermochromic, unlike their anil counterparts; however, all three compounds showed a visible colour change upon irradiation with UV light.Two conformational polymorphs of (N,N-dibutyldithiocarbamato-κ2S,S’)[tris(3,5-diphenylpyrazol-1-yl-κN2)hydroborato]cobalt(II), [Co(C45H34BN6)(C9H18NS2)] or [TpPh2Co(S2CNBu2)], 1, are accessible by recrystallization from dichloromethane-methanol to give orthorhombic polymorph 1a, while slow evaporation from acetonitrile produces triclinic polymorph 1b. The two polymorphs have been characterized by IR spectroscopy and single-crystal X-ray crystallography at 150 K. Polymorphs 1a and 1b crystallize in the orthorhombic space group Pbca and the triclinic space group P-1, respectively. The polymorphs have a trans (1a) and cis (1b) orientation of the butyl groups with respect to the S2CN plane of the dithiocarbamate ligand, which results in an intermediate five-coordinate geometry for 1a and a square-pyramidal geometry for 1b. Hirshfeld surface analysis reveals minor differences between the two polymorphs, with 1a exhibiting stronger C-H…S interactions and 1b favouring C-H…π interactions.The terpenoid (-)-Istanbulin A is a natural product isolated from Senecio filaginoides DC, one of the 270 species of Senecio (Asteraceae) which occurs in Argentina. The structure and absolute configuration of this compound [9a-hydroxy-3,4a,5-trimethyl-4a,6,7,8a,9,9a-hexahydro-4H,5H-naphtho[2,3-b]-furan-2,8-dione or (4S,5R,8R,10S)-1-oxo-8β-hydroxy-10βH-eremophil-7(11)-en-12,8β-olide, C15H20O4] were determined by single-crystal X-ray diffraction studies. It proved to be a sesquiterpene lactone showing an eremophilanolide skeleton whose chirality is described as 4S,5R,8R,10S. Structural results were also in agreement with the one- and two-dimensional (1D and 2D) NMR and HR-ESI-MS data, and other complementary spectroscopic information. In addition, (-)-Istanbulin A is a polymorph of the previously reported form of (-)-Istanbulin A, form I; thus, the title compound is denoted form II or polymorph II. Structural data and a literature search allowed the chirality of Istanbulin A to be revisited. The antimicrobial and antifungal activities of (-)-Istanbulin A, form II, were evaluated in order to establish a reference for future comparisons and applications related to specific crystal forms of Istanbulins.1,3-Benzothiazin-4-ones (BTZs) are a promising new class of drugs with activity against Mycobacterium tuberculosis, which have already reached clinical trials. A product obtained in low yield upon treatment of 8-nitro-2-(piperidin-1-yl)-6-(trifluoromethyl)-4H-benzothiazin-4-one with 3-chloroperbenzoic acid, in analogy to a literature report describing the formation of sulfoxide and sulfone derived from BTZ043 [Tiwari et al. (2015). this website ACS Med. Chem. Lett. 6, 128-133], is a ring-contracted benzisothiazolinone (BIT) 1-oxide, namely, 7-nitro-2-(piperidine-1-carbonyl)-5-(trifluoromethyl)benzo[d]isothiazol-3(2H)-one 1-oxide, C14H12F3N3O5S, as revealed by X-ray crystallography. Single-crystal X-ray analysis of the oxidation product originally assigned as BTZ043 sulfone provides clear evidence that the structure of the purported BTZ043 sulfone is likewise the corresponding BIT 1-oxide, namely, 2-[(S)-2-methyl-1,4-dioxa-8-azaspiro[4.5]decane-8-carbonyl]-7-nitro-5-(trifluoromethyl)benzo[d]isothiazol-3(2H)-one 1-oxide, C17H16F3N3O7S. A possible mechanism for the ring contraction affording the BIT 1-oxides instead of the anticipated constitutionally isomeric BTZ sulfones and antimycobacterial activities thereof are discussed.Starting from the proposed zinc carboxylate cluster tetrakis(μ-2-propylpentanoato)dizinc(II), Zn2(μ2-valp)4 (I), of valproic acid, a branched short-chain fatty acid, and bipyridine ligands, two new mixed-ligand coordination compounds, namely, bis(2,2′-bipyridine)di-μ3-hydroxido-hexakis(μ-2-propylpentanoato)bis(2-propylpentanoato)pentazinc(II), [Zn5(C8H15O2)8(OH)2(C10H8N2)2] (II), and poly[[bis(μ-4,4′-bipyridine)di-μ3-hydroxido-octakis(μ-2-propylpentanoato)bis(2-propylpentanoato)hexazinc(II)] dimethylformamide disolvate], [Zn6(C8H15O2)10(OH)2(C10H8N2)2]·2C3H7NOn (III), were synthesized. Compound II is a core-shell-type zero-dimensional discrete Zn5(μ3-OH)2 metal-organic cluster with Zn ions in double-triangle arrangements that share one Zn ion coincident with an inversion centre. The cluster contains three crystallographically non-equivalent Zn ions exhibiting three different coordination geometries (tetrahedral, square pyramidal and octahedral). The cluster cores are well separated and embedded in a protective shell of the aliphatic branched short chains of valproate.