Activity

  • Gray posted an update 7 months, 2 weeks ago

    Polyoxometalates (POMs) have been used for spectrophotometric determinations of silicon and phosphorus under acidic conditions, referred to as the molybdenum yellow method and molybdenum blue method, respectively. Many POMs are redox active and exhibit fascinating but complicated voltammetric responses. These compounds can reversibly accommodate and release many electrons without exhibiting structural changes, implying that POMs can function as excellent mediators and can be applied to sensitive determination methods based on catalytic electrochemical reactions. In addition, some rare-earth-metal-incorporated POMs exhibit fluorescence, which enables sensitive determination by the enhancement and quenching of fluorescence intensities. In this review, various analytical applications of POMs are introduced, mainly focusing on papers published after 2000, except for the molybdenum yellow method and molybdenum blue method.In recent years, the utilization of high-technology metals such as rare earth elements (REEs), which exist in extremely low quantities in the Earth, has rapidly increased with the development of new types of industrial materials and pharmaceutical products. This review provides an overview of a new type of potential anthropogenic pollution caused by high-technology metals, with a focus on REEs released into environmental waters from waste treatment plants. In this paper, potential anthropogenic pollution was defined as pollution caused by metals gradually enriched in the environment by human activity, although standard and guideline concentrations of these elements are not regulated by environmental quality standards for water pollution. We review the analytical methods of REEs and the potential anthropogenic pollution of REEs with a focus on Gd, from the viewpoints of a comparison of the degree of Gd anomaly, chemical speciation, ecotoxicology, and bioaccessibility. Moreover, we also highlight the comprehensive analysis based on multielement analysis of high-technology metals as well as REEs for the further screening for potential anthropogenic pollution.Cell analysis is of great significance for the exploration of human diseases and health. However, there are not many techniques for high-throughput cell analysis in the simulated cell microenvironment. The high designability of the microfluidic chip enables multiple kinds of cells to be co-cultured on the chip, with other functions such as sample preprocessing and cell manipulation. Mass spectrometry (MS) can detect a large number of biomolecules without labelling. Therefore, the application of the microfluidic chip coupled with MS has represented a major branch of cell analysis over the past decades. Here, we concisely introduce various microfluidic devices coupled with MS used for cell analysis. The main functions of microfluidic devices are described first, followed by introductions of different interfaces with different types of MS. Then, their various applications in cell analysis are highlighted, with an emphasis on cell metabolism, drug screening, and signal transduction. Current limitations and prospective trends of microfluidics coupled with MS are discussed at the end.In recent times, the role of fibroblast growth factor 21 (FGF21) in patients with gestational diabetes mellitus (GDM) has been increasingly investigated. However, to our knowledge, no systematic analysis has been conducted yet to evaluate the relationship between FGF21 levels and GDM. Confirmed studies related to circulating FGF21 levels and GDM were searched from the databases of PubMed, ISI Web of Science, MEDLINE and EMBASE. Data were reported as standard mean difference (SMD) and associated 95% confidence intervals (CIs). API-2 order Analysis were performed with Review Manager 5.2 and Stata version 11.0. A total of 392 cases and 435 controls in nine articles were included in this meta-analysis. The circulating FGF21 levels in pregnant women with GDM was higher than that in controls (random effects MD [95% CI] = 0.46, [0.07-0.86], p = 0.02). The result of multivariate meta-regression showed that sample size and point of sample collection contributed to heterogeneity (p = 0.033 and p = 0.047, respectively). Additionally, the results showed that there was no publication bias in this meta-analysis (Z = 1.36, p = 0.175; t = 1.24, p = 0.256, respectively). To conclude, this meta-analysis provides evidence that circulating FGF21 levels are higher in GDM subjects than controls, and it is important to clarify the relationship between circulating FGF21 levels and pregnant women with GDM in accurate prediction of GDM.Type 1 diabetes is a chronic metabolic disease characterized by hyperglycemia due to progressive destruction of pancreatic beta cells via autoimmune attack. Meteorin-like protein (metrnl) is a secreted protein homologous to the neurotrophin metrn and it is induced after exercise in the skeletal muscle. In our paper published previously, we showed that the serum level of metrnl was significantly correlated with the lipid profile, glucose profile and insulin resistance. In this experiment, we asked whether intravenous administration of metrnl could delay the onset of diabetes in non-obese diabetic (NOD) mice. 4-week-old NOD mice were injected intravenously with metrnl. Blood glucose levels were measured weekly. Insulitis scoring, intraperitoneal glucose tolerance test, adoptive T cell transfer, flow cytometry analysis and real-time PCR were performed to investigate the underlying mechanism. The results showed that intravenous administration of metrnl delayed the onset of diabetes in NOD mice. Histology of pancreas showed a decreased infiltration of leukocytes, which was in association with augmentation of regulatory T cells, suppression of autoreactive T cells and altered cytokine secretion. To sum up, the present study showed that intravenous administration of metrnl ameliorated islet lymphocyte infiltration and modulated immune cell responses, raising the possibility that it might be beneficial in improving islet function clinically.Uterus transplantation (UTx) has seen increasing global adoption as an alternative for women with uterine factor infertility to achieve pregnancy. However, several medical, ethical, and social issues need to be addressed before UTx can be applied clinically. Since 2009, Japan has amassed a large database of basic research on UTx in non-human primates, but clinical application has not been realized because of conservative attitudes and prudent concerns. Nonetheless, UTx may be viable in Japan after comprehensive resolution of the concerns associated with this medical technology.

Skip to toolbar