Activity

  • Ballard posted an update 9 months, 1 week ago

    59 and -17.74 dBm, respectively, indicating that the 2.04 µm data transmission system is more reliable under an extremely dense smoke condition.We experimentally investigate the semiconductor-to-metal transition (SMT) in vanadium dioxide thin films using an infrared thermographic technique. During the semiconductor to metal phase change process, VO2 optical properties dynamically change and infrared emission undergoes a hysteresis loop due to differences between heating and cooling stages. The shape of the hysteresis loop was accurately monitored under different dynamic heating/cooling rates. In order to quantify and understand the effects of different rates, we used a numerical modelling approach in which a VO2 thin layer was modeled as metamaterial. The main experimental findings are interpreted assuming that both the rate of formation and shape of metallic inclusions are tuned with the heating/cooling rate. The structural transition from monoclinic to tetragonal phases is the main mechanism for controlling the global properties of the phase transition. However, our experimental results reveal that the dynamics of the heating/cooling process can become a useful parameter for further tuning options and lays out a macroscopic optical sensing scheme for the microscopic phase change dynamics of VO2. Our study sheds light on phase-transition dynamics and their effect on the infrared emission spectra of VO2 thin films, therefore enabling the heating/cooling rate to be an additional parameter to control infrared emission characteristics of thermal emitters. The hysteresis loop represents the phase coexistence region, thus being of fundamental importance for several applications, such as the operation of radiative thermal logic elements based on phase transition materials. For such applications, the phase transition region is shifted for heating and cooling processes. We also show that, depending on the way the phase change elements are heated, the temperature operation range will be slightly modified.We report on performance studies of high-average-power single-pass picosecond optical parametric generation (OPG) and amplification (OPA) tunable near 2 µm in MgOPPLN pumped by an Yb-fiber laser at 1.064 µm and 80 MHz pulse repetition rate. The simple setup based on two identical crystals, and without the need for an intermediate delay line for synchronization, delivers up to 6.3 W of average power at an overall conversion efficiency of ∼50% and is tunable across 1902-2415 nm. selleck kinase inhibitor We present systematic characterization of OPG and OPA stages to compare their performance and investigate the effect of parametric generation in the high-gain limit, enabling high output power and full-width-half-maximum (FWHM) spectral bandwidths as large as 189 nm. The OPG-OPA output exhibits excellent passive power stability better than 0.3% rms and central wavelength stability better than 0.03% rms over 1 hour, in high spatial beam quality with M2 less then 2. The OPG output pulses have duration of 5.2 ps with a FWHM spectral bandwidth of 117 nm at 2123 nm, resulting in a time-bandwidth product of ΔτΔν∼40, indicating ∼4 times temporal compression compared to the input pump pulses. Theoretical simulations confirm the effect of pump beam divergence on the observed shift in wavelength tuning with respect to temperature, while the exponential gain in the parametric process is identified as playing a key role in the resulting pulse compression.We demonstrate the enhancement of the resolution of a fiber optical sensor using all-optical signal processing. By sweeping the frequency of a tunable laser across a fiber Bragg grating, a signal corresponding to the reflection spectrum of the FBG is generated. If another laser with fixed power and frequency is launched into a highly nonlinear fiber along with the FBG-shaped signal, the Kerr effect gives rise to a number of frequency sidebands, where the power in each of the sidebands is proportional an integer exponent of the signal and pump powers. By filtering out particular sidebands, this potentiation effect reduces the width of the FBG-shaped signal, making shifts in its central wavelength easier to distinguish. We report a maximum resolution enhancement factor of 3.35 obtained by extracting the n = -4 order sideband, and apply resolution enhancement to improve the resolution of an FBG based temperature sensor. The method described in this paper can be applied to existing fiber based sensors and optical systems to enhance their resolution.Multi-frequency temporal phase unwrapping (TPU) has been extensively used in phase-shifting profilometry (PSP) for the high-accuracy measurement of objects with surface discontinuities and isolated objects. However, a large number of fringe patterns are commonly required. To reduce the number of required patterns, a new hybrid multi-frequency composite-pattern TPU method was developed using fewer patterns than conventional TPU. The new method combines a unit-frequency ramp pattern with three low-frequency phase-shifted fringe patterns to form three composite patterns. These composite patterns are used together with three high-frequency phase-shifted fringe patterns to generate a high-accuracy phase map. The optimal high frequency to achieve high measurement accuracy and reliable phase unwrapping is determined by analyzing the effect of temporal intensity noise on phase error. Experimental results demonstrated that new grayscale hybrid and color hybrid multi-frequency composite-pattern TPU methods can achieve a high-accuracy measurement using only six and three images, respectively.Hexagonal boron nitride (h-BN) as a natural mid-infrared (mid-IR) hyperbolic material which supports a strong excitation of phonon polariton (PhP) has enabled a new class of photonic devices with unprecedented functionalities. The hyperbolic property of h-BN has not only brought in new physical insights but also spurred potential applications. However, most of the current h-BN devices are designed repying on near-field excitation and manipulation of PhP. For fully realizing the potentials of h-BN, research on far-field controllable excitation and control of PhP is important for future integrated photonic devices. In this work, we exploit the designs of controllable far-field excitation of PhP in nanostructure-patterned h-BN thin film for deep subwavelength focusing (FWHM∼λ0/14.9) and interference patterns of 1D (FWHM∼λ0/52) and 2D standing waves (FWHM∼λ0/36.8) which find great potential for super-resolution imaging beyond diffraction limit. These polaritonic patterns could be easily tuned remotely by manipulating the polarization and phase of incident laser.

Skip to toolbar