-
Ashby posted an update 7 months, 2 weeks ago
This work describes a novel, simple and inexpensive pen-on-paper (PoP) method for patterning hydrophobic structures in paper substrates aiming the production of paper-based analytical devices (PADs). This fabrication protocol uses a commercially available plastic welding kit that can be easily acquired and is sold as a repair tool. see more It consists of an acrylate-based resin which is deposited on the paper and then cured using a UV led, or even the sunlight, for creation of the hydrophobic barriers. The protocol is instrument-free and can be easily implemented in any laboratory. To the best of our knowledge, this is the first report of the use of this material for production of analytical devices. The developed PADs were fully characterized and exhibited better chemical resistance than other recently reported PoP approaches regarding organic media and surfactants. Moreover, the fabrication method demonstrated good analytical versatility since it allowed the production of flexible devices, flow-based devices and pencil-drawn electrochemical devices. These findings are very interesting since overcome some limitations related by other PoP reports and expand the possibilities of using this technology in several aqueous and non-aqueous applications. Lastly, the analytical usefulness of the developed devices was successfully explored through colorimetric determination of nitrite. A detection limit of 0.14 mg L-1 was achieved and several samples of natural waters were analyzed. The results showed good agreement when compared with a reference technique. So, considering the simplicity and the results presented here, this fabrication method shows great potential for use in analytical chemistry.The wide application of lateral flow assay (LFA) was limited by its low sensitivity and poor matric tolerance. Aggregation induced emission (AIE) materials show superior luminescence and good stability under close packing state, which may accelerate the development of LFA. However, the detection performance of the AIE-based LFA in different real samples was unclear. In this work, an AIE-LFA was established for norfloxacin (NOR) detection in nine types of animal-derived food. Results indicated that AIE-LFA had the average recovery range of 75.6%-95.1%, 78.6%-94.6%, 71.4%-112.7%, 81.7%-121.8%, 72.7%-93.5%, 79.8%-108.5%, 79.2%-109.4%, 76.3%-103.6%, and 80.6%-108.3% in pork, pig liver, fish, lamb, beef, milk, chicken, egg, and honey, respectively. The detection results of AIE-LFA were compatible with HPLC-MS/MS in detecting NOR in 135 real samples from nine types of animal-derived food. The developed AIE-LFA was sensitive and reliable for NOR detection in those real samples.The determination of rare earth elements (REEs) and Y in carbonates can be complicated by low REE abundances and the presence of significant amounts of Ba resulting in problematic interferences when analysed by ICP-MS. We describe here a novel ion-exchange method using the DGA resin (TODGA), combined with addition of a Tm spike, which allows the separation of the REEs+Y as a whole prior to analysis using an Element XR ICP-MS. This method was validated with results obtained on three different reference carbonate materials (CAL-S, JLs-1 and BEAN, an in-house standard), yielding reproducibility levels better than 3% (RSD) in most cases. This new separation scheme is particularly well suited for carbonate samples having very low REE contents, but could be equally applied to various rock types and organic-rich sample matrices whenever quantitative Ba removal is required.In this study, the capability of thermogravimetry in conjuction with a multivariate statistical analysis, was investigated for the screening of Sickle Cell Anemia (SCA), a hereditary disorder of hemoglobin characterized by severe hemolytic anemia with different severe clinical manifestations. SCA results from a mutation in the sixth codon of the beta globin gene, which results in the substitution of glutamic acid for valine and leads to the production of an altered form of hemoglobin, hemoglobin S (HbS). People with this disorder have atypical hemoglobin molecules which tend to aggregate together and form filaments inside the red blood cells. These deformed red blood cells called half-moon or sickle, are rigid and unable to flow inside the small vessels, creating occlusions of the small circulation. Systematic screening for SCA is not a common practice, and diagnosis is usually made when a severe complication occurs. An early and rapid diagnosis is important for patients in order to prevent and treat the painccuracy of a 100% and an error of prediction of about 0.1%.Growing evidence suggests that exosomes-encapsulated miRNAs detection is of paramount significance in early diagnostics of cancer due to protection from degradation by ribonuclease. However, exosomal microRNAs with low abundance and subtle variation have restricted their clinical application. Herein, an electrochemical biosensor for highly sensitive detection of exosomal microRNAs has been fabricated based on the double signal amplification strategy. Our proposed amplifier consists of two steps target miRNA cyclic signal amplification induced by strand displacement reaction (SDR) and subsequent deposition of silver nanoparticles induced by streptavidin-biotin interaction. Consequently, this method shows ultrahigh sensitivity to detect miRNA. Taking miRNA-21 in exosomes as a model analyte, a detection limit of 0.4 fM (S/N = 3) can be obtained. Meanwhile, the method is relatively simple and low-cost without the requirement of enzyme, which has been applied in biological samples successfully. Therefore, our miRNA assay method has shown great promise as molecular tool in the detection of exosomal miRNA and could be widely used in clinic in the future.Venous thromboembolism (VTE) is a serious clinical condition which early and accurate diagnosis may contribute to the reduction of associated morbidity and mortality. VTE occurs when a blood clot (thrombus) blocks the vein blood flow causing deep vein thrombosis (DVT) and, when it migrates to the lungs, it may clog the pulmonary arteries characterizing pulmonary embolism (PE). Analysis using fibrin degradation products or D-dimer and coagulation factor VIII may assist early diagnosis of VTE. Thus, two immunosensors were built using layer-by-layer (LbL) films technique, one containing the anti-D-dimer immobilized on polyethylene imine (PEI) and another the anti-FVIII on silk fibroin (SF). Immunosensor response, the antigen-antibody specific interaction, was investigated using cyclic voltammetry. When immunosensors, PEI/anti-D-dimer and SF/anti-FVIII, were exposed to antigens, D-dimer and Factor VIII, the voltammograms area and current were significantly increased with increasing specific antigen concentration.