-
Suhr posted an update 9 months, 1 week ago
Proteins on cell membrane are modified by N- and O-glycans. N-Glycans have been extensively characterized using advanced separation and mass spectrometry techniques. However, O-glycans remain a challenge, because of the lack of universal enzymes to release them and the large background abundances of N-glycans. Here, we report a method for in-depth structural analysis and quantitation of O-glycans derived from human cell membrane. O-Glycans were chemically released from isolated cell membrane glycoproteins following N-glycan and lipid/glycolipid removal by PNGase F digestion and Folch extraction, respectively. Released O-glycans were purified by an optimized protocol to eliminate interference from small molecules and degraded proteins. Cell surface O-glycans were then analyzed using a nanoLC-chip-QTOF mass spectrometer with a porous graphitized carbon (PGC) column, while the N-glycans and glycolipids isolated from the same cell membrane fractions were analyzed in parallel using previously reported methods. The monosaccharide compositions and linkages of the detected O-glycans were identified by exoglycosidase digestion facilitated with tandem mass spectrometry (MS/MS). Using this method, we identified 44 cell membrane O-glycan isomers with MS/MS, and, among them, we unambiguously characterized 25 O-glycan structures with exoglycosidase digestion to create a library with their complete structures, accurate masses, and retention times. In this process, we identified and characterized unexpected mannose oligomers that are α(1-2/3) linked. This library enabled the identification and quantification of unique cell surface O-glycans from different cell lines and the study of specific O-glycan changes during cell differentiation.1-Methyl-7-nitroisatoic anhydride (1M7) and 2-methylnicotinic acid imidazolide (NAI) are two of the most commonly applied RNA-SHAPE electrophiles; 1M7 due to its high reactivity and NAI for its solubility and cell permeability. While the addition of a nitro group yields desirable activation of the reagent, it also leads to poorer water solubility. This limited solubility has motivated the development of water-soluble reagents. We present alternative, isatoic anhydride-based reagents possessing variable reactivities that are simultaneously water-soluble. Solubility is gained by using a quaternary ammonium, while modulation of the reactivity is obtained by functionalization of the aryl ring. The syntheses of the reagents are discussed, and the electrophiles are demonstrated to be suitable for use for an in vitro RNA SHAPE experiment when directly compared to 1M7.Although solution hydrogen-deuterium exchange mass spectrometry (HDX/MS) is well-established for the analysis of the structure and dynamics of proteins, it is currently not exploited for nucleic acids. Here we used DNA G-quadruplex structures as model systems to demonstrate that DNA oligonucleotides are amenable to in-solution HDX/MS in native conditions. In trimethylammonium acetate solutions and in soft source conditions, the protonated phosphate groups are fully back-exchanged in the source, while the exchanged nucleobases remain labeled without detectable back-exchange. As a result, the exchange rates depend strongly on the secondary structure (hydrogen bonding status) of the oligonucleotides, but neither on their charge state nor on the presence of nonspecific adducts. We show that native mass spectrometry methods can measure these exchange rates on the second to the day time scale with high precision. Such combination of HDX with native MS opens promising avenues for the analysis of the structural and biophysical properties of oligonucleotides and their complexes.The development of new antibiotics against Gram-negative bacteria is hampered by the powerful protective properties of their cell envelope. This envelope consists of two membranes augmented by efflux transporters, which act in synergy to restrict cellular access to a broad range of chemical compounds. Recently, a kinetic model of this system has been constructed. The model revealed a complex, nonlinear behavior of the system, complete with a bifurcation, and matched very well to experimental uptake data. Here, we expand the model to include multiple transporters and apply it to an experimental analysis of antibiotic accumulation in wild-type and efflux-deficient Escherichia coli. We show that transporters acting across the inner and outer membranes have synergistic effects with each other. P22077 manufacturer In contrast, transporters acting across the same membrane are additive as a rule but can be synergistic under special circumstances owing to a bifurcation controlled by the barrier constant. With respect to ethidium bromide, the inner membrane transporter MdfA was synergistic to the TolC-dependent efflux across the outer membrane. The agreement between the model and drug accumulation was very good across a range of tested drug concentrations and strains. However, antibiotic susceptibilities related only qualitatively to the accumulation of the drugs or predictions of the model and could be fit to the model only if additional assumptions were made about the physiological consequences of prolonged cell exposure to the drugs. Thus, the constructed model correctly predicts transmembrane permeation of various compounds and potentially their intracellular activity.Developing novel cathode materials with a high energy density and long cycling stability is necessary for Na-ion batteries and Na-ion hybrid capacitors (NICs). Despite their high energy density, structural flexibility, and ease of synthesis, P-type Na layered oxides cannot be utilized in energy-storage applications owing to their severe capacity fading. In this regard, we report a novel composite layered-tunnel Na0.5Mn0.5Co0.48Mg0.02O2 cathode whose binary structure was confirmed via scanning electron microscopy and high-resolution transmission electron microscopy. Combination of the two-dimensional (2D) layered oxides with the three-dimensional tunnel structure, as well as the presence of Mg2+ ions, resulted in a high capacity of 145 mAh g-1 at a current density of 85 mA g-1, along with a high stability and rate capability. An NIC was fabricated with composite layered-tunnel structure as a battery-type electrode and commercial activated carbon as a counter electrode. The NIC exhibited a maximum energy density of 35 Wh kg-1 and good stability retaining 72% of its initial energy density after 3000 cycles.