Activity

  • House posted an update 9 months, 1 week ago

    Ultra-thin channel materials with excellent tunability of their electronic properties are necessary for the scaling of electronic devices. Two-dimensional materials such as transition metal dichalcogenides (TMDs) are ideal candidates for this due to their layered nature and great electrostatic control. Ternary alloys of these TMDs show composition-dependent electronic structure, promising excellent tunability of their properties. Here, we systematically compare molybdenum sulphoselenide (MoS2(1-x)Se2x) alloys, MoS1Se1and MoS0.4Se1.6. We observe variations in strain and carrier concentration with their composition. Using them, we demonstrate n-channel field-effect transistors (FETs) with SiO2and high-kHfO2as gate dielectrics, and show tunability in threshold voltage, subthreshold slope (SS), drain current, and mobility. MoS1Se1shows better promise for low-power FETs with a minimum SS of 70 mV dec-1, whereas MoS0.4Se1.6, with its higher mobility, is suitable for faster operations. Using HfO2as gate dielectric, there is an order of magnitude reduction in interface traps and 2× improvement in mobility and drain current, compared to SiO2. In contrast to MoS2, the FETs on HfO2also display enhancement-mode operation, making them better suited for CMOS applications.The evolution of thermodynamic anomalies are investigated in the pressure-temperature (pT) plane for silicon using the well-established Stillinger-Weber potential. Anomalies are observed in the density, compressibility and heat capacity. The relationships between them and with the liquid stability limit are investigated and related to the known thermodynamic constraints. The investigations are extended into the deeply supercooled regime using replica exchange techniques. Thermodynamic arguments are presented to justify the extension to low temperature, although a region of phase space is found to remain inaccessible due to unsuppressible crystallisation. The locus corresponding to the temperature of minimum compressibility is shown to display a characteristic ‘S’-shape in thepTprojection which appears correlated with the underlying crystalline phase diagram. The progression of the anomalies is compared to the known underlying phase diagrams for both the crystal/liquid and amorphous/liquid states. The locations of the anomalies are also compared to those obtained from previous simulation work and (limited) experimental observations.

    A prediction model for overall survival (OS) in metastatic pancreatic ductal adenocarcinoma (PDAC) including patient and treatment characteristics is currently not available, but it could be valuable for supporting clinicians in patient communication about expectations and prognosis. We aimed to develop a prediction model for OS in metastatic PDAC, called SOURCE-PANC, based on nationwide population-based data.

    Data on patients diagnosed with synchronous metastatic PDAC in 2015 through 2018 were retrieved from the Netherlands Cancer Registry. A multivariate Cox regression model was created to predict OS for various treatment strategies. Available patient, tumor, and treatment characteristics were used to compose the model. CB-839 mw Treatment strategies were categorized as systemic treatment (subdivided into FOLFIRINOX, gemcitabine/nab-paclitaxel, and gemcitabine monotherapy), biliary drainage, and best supportive care only. Validation was performed according to a temporal internal-external cross-validation scheme. ractice.

    A population-based prediction model for OS was developed for patients with metastatic PDAC and showed good performance. The predictors that were included in the model comprised both baseline patient and tumor characteristics and type of treatment. SOURCE-PANC will be incorporated in an electronic decision support tool to support shared decision-making in clinical practice.Above-ground nuclear explosions that interact with the surface of the earth entrain materials from the surrounding environment, influencing the resulting physical and chemical evolution of the fireball, which can affect the final chemical phase and mobility of hazardous radionuclides that are dispersed in the environment as fallout particles. The interaction of iron with a nuclear explosion is of specific interest due to the potential for iron to act as a redox buffer and because of the likelihood of significant masses of metals to be present in urban environments. We investigated fallout from a historic surface interacting nuclear explosion conducted on a steel tower and report the discovery of widespread and diverse iron-rich micro-structures preserved within the samples, including crystalline dendrites and micron-scale iron-rich spheres with liquid immiscibility textures. We assert these micro-structures reflect local redox conditions and cooling rates and can inform interpretation of high temperature events, enabling new insights into fireball condensation physics and chemistry when metals from the local environment (i.e. structural steel) are vaporized or entrained. These observations also significantly expand the availability of silicate immiscibility datasets applicable to rapidly quenched systems such as meteorite impact melt glass.

    The long non-coding RNA (lncRNA) OGFRP1 has been found to promote malignancy in prostate cancer (PC) and other cancer types. How this lncRNA functions in the regulation of PC chemoresistance, however, is poorly defined.

    qRT-PCR was employed to measure OGFRP1, miR-149-5p, and IL-6 expression in PC tissues and cells. IC50 values for paclitaxel and docetaxel in PC cells were assessed via a CCK-8 assay approach. Putative miR-149-5p binding targets were identified and validated through bioinformatics assays and luciferase reporter assays, respectively. The impact of OGFRP1 on PC chemoresistance in vivo was validated using a xenograft model system.

    Docetaxel-resistant PC (PC/DR) cells and tissues exhibited reduced OGFRP1 expression and increased miR-149-5p expression. Knocking down OGFRP1 augmented the sensitivity of these PC cells to docetaxel and paclitaxel in vitro and in vivo. Mechanistically, OGFRP1 was found to bind and sequester miR-149-5p within PC/DR cells, thereby indirectly regulating IL-6 expression.

Skip to toolbar