- 
	
	
Lopez posted an update 9 months, 1 week ago
The most downstream elements of the Hippo pathway, the TEAD transcription factors, are regulated by several cofactors, such as Vg/VGLL1-3. Earlier findings on human VGLL1 and here on human VGLL3 show that these proteins interact with TEAD via a conserved amino acid motif called the TONDU domain. see more Surprisingly, our studies reveal that the TEAD-binding domain of Drosophila Vg and of human VGLL2 is more complex and contains an additional structural element, an Ω-loop, that contributes to TEAD binding. To explain this unexpected structural difference between proteins from the same family, we propose that, after the genome-wide duplications at the origin of vertebrates, the Ω-loop present in an ancestral VGLL gene has been lost in some VGLL variants. These findings illustrate how structural and functional constraints can guide the evolution of transcriptional cofactors to preserve their ability to compete with other cofactors for binding to transcription factors.The effect of volatile organic compounds (VOCs) on chromium-containing atmospheric particles remains obscured because of difficulties in experimental measurements. Moreover, several ambiguities exist in the literature related to accurate measurements of atmospheric chromium concentration to evaluate its toxicity. We investigated the interaction energies and diffusivity for several VOCs in chromium (III)-containing atmospheric particles using classical molecular dynamics simulations. We analyzed xylene, toluene, ascorbic acid, carbon tetrachloride, styrene, methyl ethyl ketone, naphthalene, and anthracene in Cr(III) solutions, with and without air, to compare their effects on solution chemistry. The interaction energy between Cr(III) and water changed from 48 to 180% for different VOCs, with the highest change with anthracene and the lowest change with naphthalene. The results revealed no direct interactions between Cr(III) particles and the analyzed volatile organic compounds, except ascorbic acid. Interactions of Cr(III) and ascorbic acid differ significantly between the solution phase and the particulate phase. The diffusion of Cr(III) and all the VOCs also were observed in a similar order of magnitude (~ 10-5 cm2/s). The results can further assist in exploring the variation in chromium chemistry and reaction rates in the atmospheric particles in the presence of VOCs.A key measure of lung function in people with Cystic Fibrosis (CF) is Forced Expiratory Volume in the first second FEV1 percent predicted (FEV1pp). This study aimed to address challenges in identifying predictors of FEV1pp, specifically dealing with non-linearity and the censoring effect of death. Data was obtained from a large multi-centre Australian Cystic Fibrosis Data Registry (ACFDR). A linear mixed model was used to study FEV1pp as the endpoint. There were 3655 patients (52.4% male) included in our study. Restricted cubic splines were used to fit the non-linear relationship between age of visit and FEV1pp. The following predictors were found to be significant in the multivariate model age of patient at visit, BMI z-score, age interaction with lung transplantation, insulin dependent diabetes, cirrhosis/portal hypertension, pancreatic insufficiency, Pseudomonas aeruginosa infection and baseline variability in FEV1pp. Those with P. aeruginosa infection had a lower mean difference in FEV1pp of 4.7 units, p less then 0.001 compared to those who did not have the infection. Joint modelling with mortality outcome did not materially affect our findings. These models will prove useful for to study the impact of CFTR modulator therapies on rate of change of lung function among patients with CF.Cardiovascular diseases are the number one death worldwide. Nitric oxide (NO)-NO-sensitive (soluble) guanylyl cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway regulates diverse set of important physiological functions, including maintenance of cardiovascular homeostasis. Resting and activated sGC enzyme converts guanosine triphosphate to an important second messenger cGMP. In addition to traditional NO generators, a number of sGC activators and stimulators are currently in clinical trials aiming to support or increase sGC activity in various pathological conditions. cGMP-specific phosphodiesterases (PDEs), which degrade cGMP to guanosine monophosphate, play key role in controlling the cGMP level and the strength or length of the cGMP-dependent cellular signaling. Thus, PDE inhibitors also have clear clinical applications. Here, we introduce a homogeneous quenching resonance energy transfer (QRET) for cGMP to monitor both sGC and PDE activities using high throughput screening adoptable method. We demonstrate that using cGMP-specific antibody, sGC or PDE activity and the effect of small molecules modulating their function can be studied with sub-picomole cGMP sensitivity. The results further indicate that the method is suitable for monitoring enzyme reactions also in complex biological cellular homogenates and mixture.Effectively using genomic information greatly accelerates conventional breeding and applying it to long-lived crops promotes the conversion to genomic breeding. Because tea plants are bred using conventional methods, we evaluated the potential of genomic predictions (GPs) and genome-wide association studies (GWASs) for the genetic breeding of tea quality-related metabolites using genome-wide single nucleotide polymorphisms (SNPs) detected from restriction site-associated DNA sequencing of 150 tea accessions. The present GP, based on genome-wide SNPs, and six models produced moderate prediction accuracy values (r) for the levels of most catechins, represented by ( -)-epigallocatechin gallate (r = 0.32-0.41) and caffeine (r = 0.44-0.51), but low r values for free amino acids and chlorophylls. Integrated analysis of GWAS and GP detected potential candidate genes for each metabolite using 80-160 top-ranked SNPs that resulted in the maximum cumulative prediction value. Applying GPs and GWASs to tea accession traits will contribute to genomics-assisted tea breeding.New Hf isotope data provide new insights into the nature of the mantle beneath the southern Lau basin, adding new constraints on the displacement process of the Pacific mid-ocean ridge basalt (MORB)-type mantle by the Indian MORB-type mantle. The Hf isotopic ratios (176Hf/177Hf) of submarine lavas from the eastern Lau spreading center (ELSC) range from 0.283194 (εHf = 14.92) to 0.283212 (εHf = 15.54), with an average value of 0.283199 (εHf = 15.11) whereas those from the Valu Fa ridge (VFR) vary from 0.283221 (εHf = 15.88) to 0.283200 (εHf = 15.14), with an average of 0.283214 (15.61), indicating that ELSC lavas have a slightly more radiogenic Hf isotopic composition than VFR lavas. In contrast to the results from previous studies, the new Hf analyses combined with previous Nd isotope data clearly show that both VFR and ELSC have the distinct Hf-Nd isotope composition of the so-called DUPAL isotopic anomaly in the Indian MORB-type mantle. The DUPAL isotopic signature at VFR demonstrates for the first time that the inflow of the Indian MORB-type mantle has reached the southern tip of tectonic propagation in the southern Lau basin.