Activity

  • Fallon posted an update 7 months, 2 weeks ago

    We evaluate measurements from the recently launched satellite sensor TROPOMI (3.5 km × 7 km at nadir), averaged to 0.01° × 0.01° using physics-based oversampling, and demonstrate that TROPOMI resolves similar relative, but not absolute, tract-level differences compared to GCAS. We utilize the high-resolution FIVE and NEI NO x inventories, plus one year of TROPOMI weekday-weekend variability, to attribute tract-level NO2 disparities to industrial sources and heavy-duty diesel trucking. learn more We show that GCAS and TROPOMI spatial patterns correspond to the surface patterns measured using aircraft profiling and surface monitors. We discuss opportunities for satellite remote sensing to inform decision making in cities generally.The dissemination and propagation of antibiotic resistance genes (ARGs) via plasmid-mediated conjugation pose a major threat to global public health. The potential effects of nanomaterials on ARGs fates have drawn much attention recently. In this study, CeO2 nanoparticles (NPs), one of the typical nanomaterials proposed for increasing crop production, were applied at the concentration range of 1-50 mg/L to investigate their effects on ARGs transfer between Escherichia coli. Our results revealed that the conjugative transfer of RP4 plasmid was enhanced by 118-123% at relatively high concentrations (25 and 50 mg/L) of CeO2 NPs, however, CeO2 NPs at low concentrations (1 and 5 mg/L) inhibited the transfer by 22-26%. The opposite effect at low concentrations is mainly attributed to (i) the reduced ROS level, (ii) the weakened intercellular contact via inhibiting the synthesis of polysaccharides in extracellular polymeric substances, and (iii) the down-regulated expression of plasmid transfer genes due to the shortage of ATP supply. Our findings highlight the distinct dose-dependent responses of ARGs conjugative transfer, providing evidence for selecting appropriate NPs dose to reduce the spread of ARGs while applying nanoagrotechnology.The spatial distribution of 29 per- and polyfluoroalkyl substances (PFASs) in seawater was investigated along a sampling transect from Europe to the Arctic and two transects within Fram Strait, located between Greenland and Svalbard, in the summer of 2018. Hexafluoropropylene oxide-dimer acid (HFPO-DA), a replacement compound for perfluorooctanoic acid (PFOA), was detected in Arctic seawater for the first time. This provides evidence for its long-range transport to remote areas. The total PFAS concentration was significantly enriched in the cold, low-salinity surface water exiting the Arctic compared to warmer, higher-salinity water from the North Atlantic entering the Arctic (260 ± 20 pg/L versus 190 ± 10 pg/L). The higher ratio of perfluoroheptanoic acid (PFHpA) to perfluorononanoic acid (PFNA) in outflowing water from the Arctic suggests a higher contribution of atmospheric sources compared to ocean circulation. An east-west cross section of the Fram Strait, which included seven depth profiles, revealed higher PFAS concentrations in the surface water layer than in intermediate waters and a negligible intrusion into deep waters (>1000 m). Mass transport estimates indicated a net inflow of PFASs with ≥8 perfluorinated carbons via the boundary currents and a net outflow of shorter-chain homologues. We hypothesize that this reflects higher contributions from atmospheric sources to the Arctic outflow and a higher retention of the long-chain compounds in melting snow and ice.Asphaltenes are high-boiling and recalcitrant compounds that are generally minor components of crude oil (∼0.1-15.0 wt %) but dominate the composition of heavily weathered spilled petroleum. These solid residues exhibit a high structural complexity, comprised of polycyclic aromatic hydrocarbons (PAHs) that are a mixture of single-core (island) and multicore (archipelago) structural motifs. The mass fraction of each motif is sample-dependent. Thus, knowledge of a potential structural dependence (single- versus multicore) on the production of water-soluble species from asphaltene samples is key to understanding the contribution of photochemically generated dissolved organic matter from oil spills. In this work, asphaltene samples with enriched mass fractions of either island (single-core) or archipelago (multicore) structural motifs are photo-oxidized on artificial seawater by the use of a solar simulator. Molecular characterization of oil- and water-soluble photoproducts, conducted by Fourier transform ion cyce of archipelago motifs and the occurrence of cracking/polymerization reactions are central in the production of dissolved organic matter from fossil fuels.Global fossil fuel carbon dioxide (FFCO2) emissions will be dictated to a great degree by the trajectory of emissions from urban areas. Conventional methods to quantify urban FFCO2 emissions typically rely on self-reported economic/energy activity data transformed into emissions via standard emission factors. However, uncertainties in these traditional methods pose a roadblock to implementation of effective mitigation strategies, independently monitor long-term trends, and assess policy outcomes. Here, we demonstrate the applicability of the integration of a dense network of greenhouse gas sensors with a science-driven building and street-scale FFCO2 emissions estimation through the atmospheric CO2 inversion process. Whole-city FFCO2 emissions agree within 3% annually. Current self-reported inventory emissions for the city of Indianapolis are 35% lower than our optimal estimate, with significant differences across activity sectors. Differences remain, however, regarding the spatial distribution of sectoral FFCO2 emissions, underconstrained despite the inclusion of coemitted species information.Streams and rivers metabolize dissolved organic matter (DOM). Although most DOM compounds originate from natural sources, recreational use of rivers increasingly introduces chemically distinct anthropogenic DOM. So far, the ecological impact of this DOM source is not well understood. Here, we show that a large music festival held adjacent to the Traisen River in Austria increased the river’s dissolved organic carbon (DOC) concentration from 1.6 to 2.1 mg L-1 and stream ecosystem respiration from -3.2 to -4.5 mg L-1. The DOC increase was not detected by sensors continuously logging absorbance spectra, thereby challenging their applicability for monitoring. However, the fluorescence intensity doubled during the festival. Using parallel factor analysis, we were able to assign the increase in fluorescence intensity to the chemically stable UV-B filter phenylbenzimidazole sulfonic acid, indicating organic compounds in sunscreen and other personal care products as sources of elevated DOC. This observation was confirmed by liquid chromatography coupled with mass spectrometry.

Skip to toolbar