-
Brandon posted an update 7 months, 2 weeks ago
Epidemiological studies in Japan, including the Nakajima study and the Tsurugaya study, have indicated that green tea consumption may improve cognitive impairment. Catechins, which are typical polyphenols contained in green tea, have been reported to have antioxidative, anti-inflammatory, and neuroprotective effects. However, their impact on human cognitive function remains unclear. Therefore, we performed a double-blind, randomized, controlled study to investigate the effect of 336.4 mg of decaffeinated green tea catechins (GTC) on cognitive function after a single dose and after 12 weeks of daily intake. This study included Japanese adults between the ages of 50 and 69 years with a Mini-Mental State Examination Japanese version score of >24 and self-assessed cognitive decline. The Cognitrax testing battery was used to evaluate cognitive function. The incorrect response rate on the Continuous Performance Test significantly decreased after a single dose of GTC. After 12 weeks of daily GTC intake, the response time for Part 4 of the 4-part Continuous Performance Test, which is a two-back test, was shortened. These results suggest that daily intake of GTC might have beneficial effects on working memory.Sonodynamic therapy is an effective treatment for eliminating tumor cells by irradiating sonosentitizer in a patient’s body with higher penetration ultrasound and inducing the free radicals. Titanium dioxide has attracted the most attention due to its properties among many nanosensitizers. Hence, in this study, carbon doped titanium dioxide, one of inorganic materials, is applied to avoid the foregoing, and furthermore, carbon doped titanium dioxide is used to generate ROS under ultrasound irradiation to eliminate tumor cells. Spherical carbon doped titanium dioxide nanoparticles are synthesized by the sol-gel process. The forming of C-Ti-O bond may also induce defects in lattice which would be beneficial for the phenomenon of sonoluminescence to improve the effectiveness of sonodynamic therapy. By dint of DCFDA, WST-1, LDH and the Live/Dead test, carbon doped titanium dioxide nanoparticles are shown to be a biocompatible material which may induce ROS radicals to suppress the proliferation of 4T1 breast cancer cells under ultrasound treatment. From in vivo study, carbon doped titanium dioxide nanoparticles activated by ultrasound may inhibit the growth of the 4T1 tumor, and it showed a significant difference between sonodynamic therapy (SDT) and the other groups on the seventh day of the treatment.Technology platforms are an important strategy to facilitate the design, development and implementation of vaccines to combat high-burden diseases that are still a threat for human populations, especially in low- and middle-income countries, and to address the increasing number and global distribution of pathogens resistant to antimicrobial drugs. Generalized Modules for Membrane Antigens (GMMA), outer membrane vesicles derived from engineered Gram-negative bacteria, represent an attractive technology to design affordable vaccines. Here, we show that GMMA, decorated with heterologous polysaccharide or protein antigens, leads to a strong and effective antigen-specific humoral immune response in mice. Importantly, GMMA promote enhanced immunogenicity compared to traditional formulations (e.g., recombinant proteins and glycoconjugate vaccines), without negative impact to the anti-GMMA immune response. Our findings support the use of GMMA as a “plug and play” technology for the development of effective combination vaccines targeting different bugs at the same time.Poly(methyl methacrylate) (PMMA) is of growing interest in the application of microfluidic devices and high precision optical elements due to its excellent moldability and formability. Micromilling is one of the micromachining methods which has been extensively used to manufacture polymer components. In this study, a high-speed micromilling method was used to manufacture polymer with high form accuracy and surface quality. L-Glutamic acid monosodium The processing temperature effects on the surface quality were investigated in detail. The dynamic mechanical analysis (DMA) experiment was used to study the material mechanical property under different temperatures. According to the DMA results, the PMMA sample is in the glass and viscoelastic state during the milling process. The cutting chips under various processing temperatures are classified into three kinds according to their shapes roll, sheet, and sinter. The surface roughness of samples with sheet and roll cutting chips is smaller than that of sinter cutting chips. To obtain a better machining bottom surface and edge shape, the processing temperature below 70 °C is recommended according to the results. This work is of great value for the study of polymer removal mechanism and optimization of processing parameters for the industry.Seed development, dormancy, and germination are key physiological events that are not only important for seed generation, survival, and dispersal, but also contribute to agricultural production. RNA-binding proteins (RBPs) directly interact with target mRNAs and fine-tune mRNA metabolism by governing post-transcriptional regulation, including RNA processing, intron splicing, nuclear export, trafficking, stability/decay, and translational control. Recent studies have functionally characterized increasing numbers of diverse RBPs and shown that they participate in seed development and performance, providing significant insight into the role of RBP-mRNA interactions in seed processes. In this review, we discuss recent research progress on newly defined RBPs that have crucial roles in RNA metabolism and affect seed development, dormancy, and germination.Glioblastoma is the most aggressive and lethal brain cancer. Current treatments involve surgical resection, radiotherapy and chemotherapy. However, the life expectancy of patients with this disease remains short and chemotherapy leads to severe adverse effects. Furthermore, the presence of the blood-brain barrier (BBB) makes it difficult for drugs to effectively reach the brain. A promising strategy lies in the use of graphene quantum dots (GQDs), which are light-responsive graphene nanoparticles that have shown the capability of crossing the BBB. Here we investigate the effect of GQDs on U87 human glioblastoma cells and primary cortical neurons. Non-functionalized GQDs (NF-GQDs) demonstrated high biocompatibility, while dimethylformamide-functionalized GQDs (DMF-GQDs) showed a toxic effect on both cell lines. The combination of GQDs and the chemotherapeutic agent doxorubicin (Dox) was tested. GQDs exerted a synergistic increase in the efficacy of chemotherapy treatment, specifically on U87 cells. The mechanism underlying this synergy was investigated, and it was found that GQDs can alter membrane permeability in a manner dependent on the surface chemistry, facilitating the uptake of Dox inside U87 cells, but not on cortical neurons.