-
Baird posted an update 7 months, 2 weeks ago
The aim of our present review is to summarize the currently available knowledge on the pathogenic role of S. moorei in halitosis and other infections and to emphasize the relevance of this neglected anaerobic pathogen.(-)-Epicatechin (EC) is a flavanol that has shown numerous biological effects such as decrease risk of cardiovascular dysfunction, metabolism regulation, skeletal muscle (SkM) performance improvement and SkM cells differentiation induction, among others. The described EC acceptor/receptor molecules do not explain the EC’s effect on SkM. We hypothesize that the pregnane X receptor (PXR) can fulfill those characteristics, based on structural similitude between EC and steroidal backbone and that PXR activation leads to similar effects as those induced by EC. In order to demonstrate our hypothesis, we 1) analyzed the possible EC and mouse PXR interaction through in silico strategies, 2) developed an EC’s affinity column to isolate PXR, 3) evaluated, in mouse myoblast (C2C12 cells) the inhibition of EC-induced PXR’s nucleus translocation by ketoconazole, a specific blocker of PXR and 4) analyzed the effect of EC as an activator of mouse PXR, evaluating the expression modulation of cytochrome 3a11 (Cyp3a11) gen and myogenin protein. (-)-Epicatechin interacts and activates PXR, promoting this protein translocation to the nucleus, increasing the expression of Cyp3a11, and promoting C2C12 cell differentiation through increasing myogenin expression. These results can be the base of further studies to analyze the possible participation of PXR in the skeletal muscle effects shown by EC.Lime is one of the most commonly consumed medicinal plants in Indonesia, which must be dried to preserve its quality, but mostly by using traditional, ineffective drying method. Therefore, this study aims to investigate lime drying process a hybrid solar drying method. The hybrid solar dryer consisted of a solar dryer and Liquefied Petroleum Gas as the supplementary heater. The drying process was conducted until there was no significant weight decrease, with the drying temperature of 40, 50, 60, 70, and 80 °C. Thin-layer modeling and quality analysis were also conducted. The experimental results indicated that 5 h was required to sufficiently dry the lime at 80 °C, while drying at 40 °C took 24 h to finish. The drying rate curve of lime suggested that lime drying mostly happened during the falling-rate period. Moreover, the average efficiency of the hybrid solar dryer ranged from 5.36% to 38.61%, which increased with temperature. From the 10 thin-layer drying models used, the Wang and Singh model was the most suitable to describe the drying behavior of lime. The effective diffusivity values of the limes and the activation energy value during hybrid solar drying were within their respective acceptable range for agricultural products. However, as the drying temperature was increased from 40 to 80 °C, the total phenolic content and vitamin C content decreased, from 87.3 to 27.8 mg GAE/100 g dry limes and 0.118 to 0.015 ppm, respectively. It can be concluded that hybrid solar dryer is able to sufficiently dry the lime, with acceptable drying time and dryer efficiency, although using high drying temperature will decrease the quality of dried lime. Further modifications and improvements to the hybrid solar dryer are required to maximize the quality of dried lime while still maintaining fast and effective drying process.This article presents an analysis of the potential forest damage that occurred due to the COVID-19 pandemic in rural communities on the Forest Management Unit (FMUs). It focused on forest utilization and deforestation before and during the epidemic. Base on The data on online surveys using Google form instruments, Zoom meetings, and in-depth telephone interviews with the informants. The data of the research were analyzed descriptively using the mind mapping method. The data analysis shows that social and economic impacts potentially enhance the threat of forest resource utilization-increasing pressure on the forest due to the increase in forest product demand. Even though the government made efforts to minimize forest degradation and prevent illegal logging, the communities didn’t follow the policy because there were no alternative solutions. The timber logging is carried out into a threat to forest degradation when it’s not immediately prevented. The FMU needs to improve access to rural living near the forest to increase their forest income. L-Glutamic acid These solutions are crucial for reducing illegal logging activities and forest degradation in the pandemic.The compositional analysis of volatile compounds of Nigella sativa L. seeds obtained from India and Bangladesh was carried out in this study. Apart from the proportion of volatile compounds, the chemical composition of seeds from both sources were similar. The major volatile compounds in Bangladesh seeds were p-cymene (36.35%), thymoquinone (29.77%), α-thujene (12.40%), carvacrol (2.85%), β-pinene (2.41%), limonene (1.64%), methyl linoleate (1.33%) and sabinene (1.18%), contribution of these is 87.93% of the total volatile oil. On the other hand, the major volatile compounds in Indian seeds were p-cymene (41.80%), α-thujene (13.93%), thymoquinone (10.27%), methyl linoleate (4.02%), carvacrol (3.65%), β-pinene (2.96%), d-limonene (2.11%), 4,5-epoxy-1-isopropyl-4- methyl-1-cyclohexene (1.80%), sabinene (1.50%) and 4-terpineol (1.22%); contribution of these were 83.24% of the total volatile oil. In both seeds, p-cymene, thymoquinone, and α-thujene were the major components. Importantly, N. sativa seeds of Bangladesh contained almost 3-fold thymoquinone compared to Indian seeds. In conclusion, the seeds from Bangladesh contain a higher amount of terpene ketones (29.86%) represented by thymoquinone in comparison to Indian seeds (10.61%); on the other hand, Indian seeds contained a higher amount of terpene hydrocarbons (63.18%) mainly p-cymene, compared to Bangladesh seeds (54.53%). This is the first study to report detailed compositional analysis and comparison of Nigella sativa L. seeds from Bangladesh and India.