Activity

  • Parsons posted an update 9 months, 1 week ago

    Cyclic nucleotide-gated (CNG) channels convert cyclic nucleotide (CN) binding and unbinding into electrical signals in sensory receptors and neurons. this website The molecular conformational changes underpinning ligand activation are largely undefined. We report both closed- and open-state atomic cryo-EM structures of a full-length Caenorhabditis elegans cyclic GMP-activated channel TAX-4, reconstituted in lipid nanodiscs. These structures, together with computational and functional analyses and a mutant channel structure, reveal a double-barrier hydrophobic gate formed by two S6 amino acids in the central cavity. cGMP binding produces global conformational changes that open the cavity gate located ~52 Å away but do not alter the structure of the selectivity filter-the commonly presumed activation gate. Our work provides mechanistic insights into the allosteric gating and regulation of CN-gated and nucleotide-modulated channels and CNG channel-related channelopathies.Spinal cord injury (SCI) leads to loss of sensory and motor function below the level of injury leading to paralysis and limitations to locomotion. Therefore, persons with SCI face various challenges in engaging in regular physical activity, which leads to a reduction in physical fitness, increases in body fat mass, and reduced physical and mental health status. Moderate intensity continuous training (MICT) is recommended to enhance physical fitness and overall health status in this population, but it is not always effective in promoting these benefits. High intensity interval training (HIIT) has been promoted as an alternative to MICT in individuals with SCI due to its documented efficacy in healthy able-bodied individuals as well as those with chronic disease. However, the body of knowledge concerning its application in this population is limited and mostly composed of studies with small and homogeneous samples. The aim of this review was to summarize the existing literature regarding the efficacy of HIIT on changes in health- and fitness-related outcomes in this population, denote potential adverse responses to HIIT, describe how participants perceive this modality of exercise training, and identify the overall feasibility of interval training in persons with SCI.Two-photon microscopy is widely used to investigate brain function across multiple spatial scales. However, measurements of neural activity are compromised by brain movement in behaving animals. Brain motion-induced artifacts are typically corrected using post hoc processing of two-dimensional images, but this approach is slow and does not correct for axial movements. Moreover, the deleterious effects of brain movement on high-speed imaging of small regions of interest and photostimulation cannot be corrected post hoc. To address this problem, we combined random-access three-dimensional (3D) laser scanning using an acousto-optic lens and rapid closed-loop field programmable gate array processing to track 3D brain movement and correct motion artifacts in real time at up to 1 kHz. Our recordings from synapses, dendrites and large neuronal populations in behaving mice and zebrafish demonstrate real-time movement-corrected 3D two-photon imaging with submicrometer precision.The Rosetta software for macromolecular modeling, docking and design is extensively used in laboratories worldwide. During two decades of development by a community of laboratories at more than 60 institutions, Rosetta has been continuously refactored and extended. Its advantages are its performance and interoperability between broad modeling capabilities. Here we review tools developed in the last 5 years, including over 80 methods. We discuss improvements to the score function, user interfaces and usability. Rosetta is available at http//www.rosettacommons.org .The transcriptome contains rich information on molecular, cellular and organismal phenotypes. However, experimental and statistical limitations constrain sensitivity and throughput of genetic screening with single-cell transcriptomics readout. To overcome these limitations, we introduce targeted Perturb-seq (TAP-seq), a sensitive, inexpensive and platform-independent method focusing single-cell RNA-seq coverage on genes of interest, thereby increasing the sensitivity and scale of genetic screens by orders of magnitude. TAP-seq permits routine analysis of thousands of CRISPR-mediated perturbations within a single experiment, detects weak effects and lowly expressed genes, and decreases sequencing requirements by up to 50-fold. We apply TAP-seq to generate perturbation-based enhancer-target gene maps for 1,778 enhancers within 2.5% of the human genome. We thereby show that enhancer-target association is jointly determined by three-dimensional contact frequency and epigenetic states, allowing accurate prediction of enhancer targets throughout the genome. In addition, we demonstrate that TAP-seq can identify cell subtypes with only 100 sequencing reads per cell.Gene transcription is counterbalanced by messenger RNA decay processes that regulate transcript quality and quantity. We show here that the evolutionarily conserved DHH1/DDX6-like RNA hellicases of Arabidopsis thaliana control the ephemerality of a subset of cellular mRNAs. These RNA helicases co-localize with key markers of processing bodies and stress granules and contribute to their subcellular dynamics. They function to limit the precocious accumulation and ribosome association of stress-responsive mRNAs involved in auto-immunity and growth inhibition under non-stress conditions. Given the conservation of this RNA helicase subfamily, they may control basal levels of conditionally regulated mRNAs in diverse eukaryotes, accelerating responses without penalty.An in planta gene editing approach was developed wherein Cas9 transgenic plants are infected with an RNA virus that expresses single guide RNAs (sgRNAs). The sgRNAs are augmented with sequences that promote cell-to-cell mobility. Mutant progeny are recovered in the next generation at frequencies ranging from 65 to 100%; up to 30% of progeny derived from plants infected with a virus expressing three sgRNAs have mutations in all three targeted loci.

Skip to toolbar