Activity

  • Travis posted an update 9 months, 1 week ago

    etes in this population.

    This study for the first time establishes that negative, anxiety-related perceptions about concussions are prevalent in a collegiate athlete population. Addressing these perceptions through evidence-based, educational and management initiatives, such as highlighting that concussions are treatable and most do not result in long-term negative consequences with early diagnosis and proper management, are critical to improve emotions surrounding concussion. This may be particularly important for female athletes in this population.Postmenopausal osteoporosis (OPO) is one of the most common types of primary osteoporosis. There is currently lack of a plasma biomarker for sensitive and early diagnosis of OPO. Here we aimed to explore the potential of early B cell factor 1 (EBF1) as a new plasma biomarker of OPO. Quantitative real-time PCR was used to measure the plasma EBF1 levels. Epigenetic signaling pathway inhibitors Absorptiometry markers, such as lumbar spine (LS) bone mineral density (BMD) and LS T score were obtained after X-ray scans. Biochemical analyses used to measure osteopontin (OPN), β-isomerized C-terminal telopeptides and total N-terminal procollagen of type-I collagen levels of patients with osteopenia (OPE, n = 81), osteoporosis (OPO, n = 98) as well as healthy subjects (NC, n = 110). Quantitative real-time PCR was used to measure the plasma levels of PAX5 and GSTP1, which are target genes of EBF1. EBF1 was downregulated in OPO patients. Levels of EBF1 were positively correlated to clinicopathological characteristics, including LS BMD and LS T scores, and negatively correlated to OPN and total N-terminal procollagen of type-I collagen levels. Increased PAX5 and GSTP1 levels also demonstrated strong correlations with higher EBF1, LS BMD and LS T score. Anti-osteoporotic treatment resulted in significant upregulation of EBF1, PAX5 and GSTP1 at 6 mo after treatment. Our study suggests that plasma EBF1 is a potential biomarker for diagnosing and assessing treatment outcome of OPO.Endometriosis is a chronic oestrogen-dependent gynaecological disorder characterized by non-menstrual pelvic pain, infertility and the extrauterine growth of endometrial-like glands and stroma. It has been noted that the eutopic endometrium of women with endometriosis is functionally distinct from that of women without endometriosis. Moreover, ectopic endometrial implants are functionally different from the eutopic endometrium of women with endometriosis. However, the mechanisms directing these differences are ill-defined. It is proposed here that small membrane-bound extracellular vesicles called exosomes are important vehicles in the protection and transport of signalling molecules central to the dysregulation of endometrial function in women with endometriosis. Therefore, a critical review of the literature linking exosomes and their cargo to the pathobiology of endometriosis was conducted. Circulating peritoneal fluid and endometrial cell exosomes contained long non-coding RNA, miRNA and proteins involved in histone modification, angiogenesis and immune modulation that differed significantly in women with endometriosis compared with controls. Moreover, experimental evidence supports a role for exosomes and their cargo in angiogenesis, neurogenesis, immune modulation and endometrial stromal cell invasion. It is therefore suggested that exosomes play an important role in the pathophysiology of endometriosis.

    A critical performance metric for any quantitative imaging biomarker is its ability to reliably generate similar values on repeat testing. This is known as the repeatability of the biomarker, and it is used to determine the minimum detectable change needed in order to show that a change over time is real change and not just due to measurement error. Test-retest studies are the classic approach for estimating repeatability; however, these studies can be infeasible when the imaging is expensive, time-consuming, invasive, or requires contrast agents. The objective of this study was to develop and test a method for estimating repeatability without a test-retest study.

    We present a statistical method for estimating repeatability and testing whether an imaging method meets a specified criterion for repeatability in the absence of a test-retest study. The new method is applicable for the particular situation where a reference standard is available. A Monte Carlo simulation study was conducted to evaluate the performance of the new method.

    The proposed estimator is unbiased, and hypothesis tests with the new estimator have nominal type I error rate and power similar to a test-retest study. We considered the situation where the reference standard provides the true value, as well as when the reference standard itself has various magnitudes of measurement error. An example from CT imaging biomarkers of atherosclerosis illustrates the new method.

    Precision of a QIB can be measured without a test-retest study in the situation where a reference standard is available.

    Precision of a QIB can be measured without a test-retest study in the situation where a reference standard is available.

    This study aims to develop and validate a parametric response mapping (PRM) methodology to accurately identify diseased regions of the lung by using variable thresholds to account for alterations in regional lung function between the gravitationally-independent (anterior) and gravitationally-dependent (posterior) lung in CT images acquired in the supine position.

    34 male Sprague-Dawley rats (260-540 g) were imaged, 4 of which received elastase injection (100 units/kg) as a model for emphysema (EMPH). Gated volumetric CT was performed at end-inspiration (EI) and end-expiration (EE) on separate groups of free-breathing (n=20) and ventilated (n=10) rats in the supine position. To derive variable thresholds for the new PRM methodology, voxels were first grouped into 100 bins based on the fractional distance along the anterior-to-posterior direction. Lower limits of normal (LLN) for x-ray attenuation in each bin were set by determining the smallest region that enclosed 98% of voxels from healthy, ventilated animals.

Skip to toolbar