-
Vinson posted an update 9 months, 1 week ago
Cataract is the leading cause of blindness worldwide. Congenital or paediatric cataract can result in permanent visual impairment or blindness even with best attempts at treatment. A significant proportion of paediatric cataract has a genetic cause. Therefore, identifying the genes that lead to cataract formation is essential for understanding the pathological process of inherited paediatric cataract as well as to the development of new therapies. Despite clear progress in genomics technologies, verification of the biological effects of newly identified candidate genes and variants is still challenging. Here, we provide a step-by-step pipeline to evaluate cataract candidate genes in F0 zebrafish using CRISPR-Cas9 ribonucleoprotein complexes (RNP). Detailed descriptions of CRISPR-Cas9 RNP design and formulation, microinjection, optimization of CRISPR-Cas9 RNP reagent dose and delivery route, editing efficacy analysis as well as cataract formation evaluation are included. Following this protocol, any cataract candidates can be readily and efficiently evaluated within 2 weeks using basic laboratory supplies.Campylobacteriosis is a disease in humans caused by the infection from Campylobacter spp. Human cases are mainly due to Campylobacter jejuni, although C. coli can cause gastroenteritis in humans as well. The bacteria are commensal in chicken tract and can be contaminated into chicken products during processing. Obviously, detecting reagents such as a specific antibody is essential for the development of immune-based detection methods for C. CHIR-99021 mw jejuni or C. coli. In this study, in silico techniques were used to design a chimeric recombinant antigen, named multiepitope antigen (MEA), for the production of specific polyclonal antibody. To design MEA polypeptide based on C. jejuni fibronectin-binding protein or CadF, four conserved and unique antigenic peptides were identified and fused together directly. The C. jejuni CadF-based MEA polypeptide fused with two single six-histidine tags at both C- and N-terminal ends was expressed under Escherichia coli expression system. The recombinant MEA was successfully produced and purified by Ni-NTA resin with a high satisfactory yield. Indirect ELISA results showed that anti-MEA polyclonal antibody derived from rabbit serum had a titer of 16,000, indicating high antigenicity of MEA polypeptide. Dot blot results also confirmed that the produced anti-MEA antibody could specifically recognize both C. jejuni and C. coli whole cells as expected while there was no cross-reactivity to non-Campylobacter spp. tested in this study.Lipase producer bacterium isolated from Erzurum was identified as Aeromonas caviae LipT51 (GenBank ID MN818567.1) by 16S rDNA sequencing and conventional methods. Extracellular lipase was purified by ammonium sulphate precipitation, centrifugal filtration, and anion-exchange chromatography resulting in 6.1-fold purification with 28% final yield. Molecular weight was 31.6 kDa on SDS-PAGE. Lipase was stable over a broad range of pH (6-11) and temperature (25-70 °C), and showed optimum activity at pH 9 and 60 °C. Km and Vmax for pNPP hydrolysis were 0.88 mM and 34.2 U/mg protein, respectively. Ba2+, Ca2+, Co2+, Cu2+, Fe3+, and Mg2+ increased activity, while Mn2+, Mo2+, Ni2+, Zn2+, and other additives partially decreased. Activity and stability increased with laundry detergent and slightly decreased with handwash and dishwashing detergents. Alkaline and thermostable lipase from newly isolated A. caviae has been shown for the first time to be remarkably compatible with laundry detergent and improve washing performance by enhanced oil-stain removal.
Child Sexual Assault (CSA) is not an uncommon but an under-reported crime. Along with social and psychological critical issues, there are multiple challenges faced by the surgical team for the treatment of complex perineal injuries associated with CSA. This study was conducted to find clinical presentation and management of CSA along with its problems and challenges encountered by the pediatric surgical team.
This was a retrospective study from 2010 to 2019, conducted in the department of pediatric surgery at a tertiary referral center. All-female patients with a definitive history of sexual assault were included in the study.
Seven patients fulfilled the inclusion criteria and the mean age was 5.3years. After a primary survey, all patients were taken up for examination under anesthesia (EUA). Three patients were managed by the primary repair of the wound and did well during follow-up. Four patients had grade 4 perineal injury and required stage reconstruction. As a first stage, repair of rectal tear, voutcomes in terms of continence for the severe grade of perineal injuries.Calcium is a critical secondary messenger in microglia. In response to inflammation, microglia mobilize intracellular calcium and increase the expression of inducible nitric oxide synthase (iNOS), which produces nitric oxide (NO). This study set to explore whether NO regulates intracellular calcium dynamics through transient receptor potential (TRP) channels in primary wildtype (WT) and iNOS knockout (iNOS-/-) microglia, and the BV2 microglial cell line using calcium imaging and voltage-clamp recordings. Our results demonstrated that application of the NO-donor SNAP induced a biphasic calcium response in naïve murine microglia. Specifically, phase I was characterized by a rapid decline in calcium influx that was attenuated by pretreatment of the store operated calcium channel (SOCC) inhibitor 2APB, while phase II presented as a slow calcium influx that was abolished by pretreatment with the TRP vanilloid type 2 (TRPV2) channel inhibitor tranilast. Importantly, in the presence of a protein kinase G (PKG) inhibitor, the SNAP-mediated calcium decline in phase I persisted while the calcium influx in phase II was abolished. Application of thapsigargin to activate SOCCs caused a calcium influx through a nonselective cation conductance in BV2 microglia, which was abruptly attenuated by SNAP. Importantly, iNOS-/- microglia displayed a significantly larger calcium influx though SOCCs while expressing less stromal interaction molecule 1, Orai1, and TRP canonical type 1 and 3 mRNA, when compared to WT microglia. Together, these results demonstrate that NO signaling restricts calcium influx through SOCCs independent of PKG signaling and increases calcium influx through TRPV2 channels in a PKG-dependent mechanism in microglia.