Activity

  • Markussen posted an update 7 months, 2 weeks ago

    Management of thoracic vascular injury predominantly focuses on the aorta and its tributaries while reports of venous injury are less frequent. Although rare, traumatic azygous vein injuries are associated with high mortality. Prompt treatment is required and has traditionally been open surgery. We present a case of an endovascular repair of an azygous vein injury.

    A female patient presented to our trauma center following ejection after a motor vehicle collision (MVC). CT imaging workup revealed mediastinal and periaortic hematoma with active contrast extravasation adjacent to the azygos vein. She was referred to interventional radiology for vascular evaluation and potential endovascular intervention. The patient met criteria for class III hypovolemic shock upon arrival in the endovascular suite. Aortography demonstrated no arterial injury. Venography revealed a pseudoaneurysm on the superior aspect of the azygos arch and contrast extravasation from the inferior margin of the azygous arch. A stent-graft wuch as the one presented here. We believe endovascular stent-graft treatment offers an innovative alternative to the current standard of operative management of azygos vein injury.The Society of Surgical Oncology is committed to reducing health disparities adversely affecting sexual and gender minorities. Transgender persons represent a socially disadvantaged group who frequently experience discrimination and receive disparate care, resulting in suboptimal cancer outcomes. The rate of breast cancer development in transgender individuals differs from rates observed in their cisgender counterparts, however there is little evidence to quantify these differences and guide evidence-based screening and prevention. AZD9291 in vivo There is no consensus for breast cancer screening guidelines in transgender patients. In this review, we discuss barriers to equitable breast cancer care, risk factors for breast cancer development, and existing data to support breast cancer screening in transgender men and women.

    Training in retrograde intrarenal surgery for the treatment of renal stone disease is a challenging task due to the unique complexity of the procedure. This study introduces a series of 3D printed models of upper urinary tract and stones designed to improve the training process.

    Six different models of upper urinary tract were algorithmically isolated, digitally optimized and 3D printed from real-life cases. Soft and hard stones in different sizes were produced from 3D printed moulds. The models were fitted onto a commercially available part-task trainer and tested for retrograde intrarenal surgery.

    Each step of the procedure was simulated with extraordinary resemblance to real-life cases. The unique anatomical intricacy of each model and type of stones allowed us to reproduce surgeries of increasing difficulty. As the case-load required to achieve proficiency in retrograde intrarenal surgery is high, benchtop simulation could be integrated in training programs to reach good outcomes and low complication rates faster. Our models match incredible anatomical resemblance with low production cost and high reusability. Validation studies and objective skills assessment during simulations would allow comparison with other available benchtop trainers and the design of stepwise training programs.

    3D printing is gaining a significant importance in surgical training. Our 3D printed models of the upper urinary tract might represent a risk-free training option to hasten the achievement of proficiency in endourology.

    3D printing is gaining a significant importance in surgical training. Our 3D printed models of the upper urinary tract might represent a risk-free training option to hasten the achievement of proficiency in endourology.

    Burkitt lymphoma (BL) is highly curable, and prompt institution of therapy is critical to achieving optimal outcomes. Although current “standard” approaches are very effective in disease eradication, treatment-related toxicity makes optimal delivery of curative therapy a challenge, especially in older and immunocompromised individuals. Reduced intensity approaches with fewer toxic complications have been the focus of some recent studies. A critical question is if they can replace “standard” approaches by maintaining high curability with improved tolerability. Additionally, new molecular insights in BL biology suggest that in the future, “targeted therapy” approaches may be feasible using small molecule inhibitors and novel strategies. Recently, a new category of aggressive lymphoma named “high-grade B-cell lymphoma (HGBL) with MYC and BCL2 and/or BCL6 translocations” has been recognized. This category overlaps clinically and biologically with BL and has an inferior prognosis compared to most B-cell lymphomaiology suggest that in the future, “targeted therapy” approaches may be feasible using small molecule inhibitors and novel strategies. Recently, a new category of aggressive lymphoma named “high-grade B-cell lymphoma (HGBL) with MYC and BCL2 and/or BCL6 translocations” has been recognized. This category overlaps clinically and biologically with BL and has an inferior prognosis compared to most B-cell lymphomas, and the optimal approach to its management remains, as yet, undefined. In this review, we discuss the current landscape of BL treatment including recent results with low-intensity regimens and also consider current approaches to HGBL. We also explore how recently elucidated novel biological insights in BL biology may shape future therapeutic directions including the use of novel cellular therapy approaches.A rechargeable lithium-oxygen battery (LOB) operates via the electrochemical formation and decomposition of solid-state Li2O2 on the cathode. The rational design of the cathode nanoarchitectures is thus required to realize high-energy-density and long-cycling LOBs. Here, we propose a cathode nanoarchitecture for LOBs, which is composed of mesoporous carbon (MPC) integrated with carbon nanotubes (CNTs). The proposed design has the advantages of the two components. MPC provides sufficient active sites for the electrochemical reactions and free space for Li2O2 storage, while CNT forests serve as conductive pathways for electron and offer additional reaction sites. Results show that the synergistic architecture of MPC and CNTs leads to improvements in the capacity (~ 18,400 mAh g- 1), rate capability, and cyclability (~ 200 cycles) of the CNT-integrated MPC cathode in comparison with MPC.

Skip to toolbar