Activity

  • Hartvig posted an update 7 months, 2 weeks ago

    Neutron reflectivity (NR) measurements have been employed to study the interfacial structuring and composition of electroresponsive boundary layers formed by an ionic liquid (IL) lubricant at an electrified gold interface when dispersed in a polar solvent. The results reveal that both the composition and extent of the IL boundary layers intricately depend on the bulk IL concentration and the applied surface potential. At the lowest concentration (5% w/w), a preferential adsorption of the IL cation at the gold electrode is observed, which hinders the ability to electro-induce changes in the boundary layers. In contrast, at higher IL bulk concentrations (10 and 20% w/w), the NR results reveal a significantly larger concentration of the IL ions at the gold interface that exhibit significantly greater electroresponsivity, with clear changes in the layer composition and layer thickness observed for different potentials. In complementary atomic force microscopy (AFM) measurements on an electrified gold surface, such IL boundary layers are demonstrated to provide excellent friction reduction and electroactive friction (known as tribotronics). In agreement with the NR results obtained, clear concentration effects are also observed. Together such results provide valuable molecular insight into the electroactive structuring of ILs in solvent mixtures, as well as provide mechanistic understanding of their tribotronic behaviours.Endothelial dysfunction is associated with cardiovascular diseases and involves a chronic inflammatory process that together with oxidative stress increases the permeability of the vascular endothelium. The aim of this study was to evaluate the role of red and white wine pomace products (rWPPs and wWPPs) in the maintenance of endothelial integrity in hyperglycemia of EA.hy926 endothelial cells. EA.hy926 endothelial cells exposed to hyperglycemia were treated with the in vitro digested fractions of rWPPs and wWPPs. A Real Time Cellular Analysis (RTCA) system was used to evaluate the endothelial monolayer integrity after INF-γ stimulation of pre-treated endothelial cells with the digested fractions. The changes in cell viability, NO, ROS and NOX4 were recorded and actin cytoskeleton and E-cadherin junctions were evaluated by immunofluorescence. All digested fractions prevent the hyperglycemic actions in the cell viability and NO/ROS balance. The inflammatory mediator INF-γ and hyperglycemia caused a decrease in RTCA adhesion of the EA.hy926 endothelial cell monolayer. Pre-treatment with all digested fractions enhanced the EA.hy926 endothelial monolayer integrity and maintained actin cytoskeleton and E-cadherin junctions. These in vitro studies elucidate that the anti-hyperglycemic and anti-inflammatory actions of wine pomace products involve a decrease in ROS production and the stabilization of junction proteins via modulation of VE-cadherin and actin cytoskeleton suggesting a potential prevention of endothelial damage by these natural products.We have adapted a set of classification algorithms, also known as machine learning, to the identification of fluid and gel domains close to the main transition of dipalmitoyl-phosphatidylcholine (DPPC) bilayers. Using atomistic molecular dynamics conformations in the low and high temperature phases as learning sets, the algorithm was trained to categorise individual lipid configurations as fluid or gel, in relation with the usual two-states phenomenological description of the lipid melting transition. We demonstrate that our machine can learn and sort lipids according to their most likely state without prior assumption regarding the nature of the order parameter of the transition. Results from our machine learning study provide strong support in favour of a two-states model approach of membrane fluidity.Spin-transfer-torque mediated quantum magnetotransport behaviour can be realized via magnetization density switching in 2D van der Waals heterostructures for device applications. In this context, time-dependent spin-current controls the spin-transfer-torque behaviour within a density functional theory simulation supported by Green’s function. Here, magnetotransport characteristics have been revealed in a model semiconducting MoS2/phosphorene van der Waals heterostructure at the nanoscale. We study the dynamics of spin-current channelized heterojunction transport with rotational variation in the magnetization angle. It is observed that the time-varying spin-transfer-torque remains invariant irrespective of the magnetization angle direction. Meanwhile, the polarized spin-current shows a persistent damped oscillatory behavior with the oscillation frequency proportional to the applied external magnetic field. This oscillating behavior shows a transient spin-transfer-torque with close proximity to the steady-state value. These findings support the existence of active interfacial resonant states for spintronic device applications.A family of acyclic squaramide receptors (L1-L5) have been synthesised with the aim to bind anions in a competitive solvent mixture and to evaluate how the presence of additional H-bond donor groups on the squaramide scaffold could affect the affinity towards anions and the transmembrane transport ability.N-Iminopyridinium ylides are competent monodentate directing groups for cobalt-catalysed annulation of sp2 C-H bonds with internal alkynes. The pyridine moiety in the ylide serves as an internal oxidant and is cleaved during the reaction. The annulation reactions possess excellent compatibility with heterocyclic substrates, tolerating furan, thiophene, pyridine, pyrrole, pyrazole, and indole functionalities.The hydroxyl substituent in flavonoids can cause the binding site to change from DS1 to DS2 and restore the ESIPT process of flavonoids, thereby leading to a unique dual-emissive response towards human serum albumin.1,2,4,5-Tetrazines have become extremely useful tools in chemical biology. However, the synthesis of some challenging substrates such as asymmetrically disubstituted alkyltetrazines is still a limitation for the widespread use of this class of compounds. Herein we describe an efficient route to these compounds based on the Sonogashira coupling of 3-bromo-6-methyl-1,2,4,5-tetrazine and 3-bromo-6-phenyl-1,2,4,5-tetrazine with terminal alkynes. Selleckchem CCT245737 The preparation of the starting reagents has also been optimized. The alkynyl products have been used as intermediates for the synthesis of dialkyl-tetrazines through a sequence of hydrogenation and re-oxidation with unprecedented yields. The synthetic applicability of this new approach is showcased through the preparation of several unnatural amino acids bearing alkynyl- and alkyl-1,2,4,5-tetrazine fragments.

Skip to toolbar