-
Falk posted an update 9 months ago
The apoptosis of foam cells leads to instability of atherosclerotic plaques. This study was designed to explore the protective role of CTRP9 in foam cell apoptosis. In our experiment, CTRP9 alleviated foam cell apoptosis. Meanwhile, CTRP9 upregulated the expression of proteins important for cholesterol efflux, such as LXRα, CYP27A1, ABCG1 and ABCA1, and improved cholesterol efflux in foam cells. Moreover, CTRP9 inhibited Wnt3a and β-catenin expression and β-catenin nuclear translocation in foam cells. In addition, adenovirus overexpression of Wnt3a abolished the effect of CTRP9 on macrophage apoptosis. Mechanistically, the AMPK inhibitor abolished the effect of CTRP9 on foam cell apoptosis, and downregulation of AdipoR1 by siRNA abrogated the activation of AMPK and the effect of CTRP9 on foam cell apoptosis. We concluded that CTRP9 achieved these protective effects on foam cells through the AdipoR1/AMPK pathway.
To determine in-vivo chromatic and whiteness changes produced by short-term dental dehydration.
Spectral reflectance of 452 upper incisors (226 centrals and 226 laterals) of 113 participants were measured using a spectroradiometer at baseline and after short-term dehydration (minutes 2, 4, 6, 8 and 10). CIE L*a*b* color coordinates (L*, a*, b*, C*
and h
) and whiteness index for dentistry (WI
) were calculated. Color differences (ΔE
, ΔE
) and whiteness differences (ΔWI
) were computed and interpreted based on their respective 5050% perceptibility (PT) and acceptability thresholds (AT). Statistical analysis was performed using the related samples Wilcoxon signed-rank test.
L* showed an increasing trend with dehydration, while a*, b*, C*
and h
have a decreasing tendency. All chromatic coordinates showed statistically significant differences (p < 0.003) at each interval of dehydration compared with baseline, except a* for all teeth. For ΔE
and ΔE
values were higher than PT after 2 min of teeth dehydration and higher than AT after 6 and 8 min, respectively. The percentage of teeth exceeding corresponding PT was higher than 50% after 2 min. WI
index increased with dehydration time, while whiteness differences were clinically perceptible after 4 min. Statistically significant differences were found for WI
between all dehydration intervals (except 8-10 min). The percentage of teeth exceeding whiteness PT was higher than 50% after 6 min of teeth dehydration.
Short-term dental dehydration produces clinically unacceptable changes in tooth color and clinically perceptible increase in tooth whiteness level.
Clinical shade matching must be done within the first two minutes of any clinical procedure that requires precise chromatic determination but implies a risk of tooth dehydration.
Clinical shade matching must be done within the first two minutes of any clinical procedure that requires precise chromatic determination but implies a risk of tooth dehydration.Carbohydrates play essential structural and biochemical roles in all living organisms. Glycopolymers are attractive as well-defined biomimetic analogs to study carbohydrate-dependent processes, and are widely applicable biocompatible materials in their own right. Glycopolypeptides have shown great promise in this area since they are closer structural mimics of natural glycoproteins than other synthetic glycopolymers and can serve as carriers for biologically active carbohydrates. This review highlights advances in the area of design and synthesis of such materials, and their biomedical applications in therapeutic delivery, tissue engineering, and beyond.There exist close relationships among oxidative stress, dyslipidaemia, inflammation, and autoimmune response in patients with systemic lupus erythematosus (SLE). Dysfunction and/or dysregulation of immunocytes is one of the major characteristics of SLE pathogenesis. Lipids play many important roles in biological processes and cellular functions. We hypothesized that oxidative stress-induced aberrant lipid metabolism and integrity presented in immunocytes is one of the early events in patients, thereby leading to enhanced production of IgG autoantibodies and cytokines. Herein, shotgun lipidomics was employed for quantitative analysis of cellular lipidomes in peripheral blood mononuclear cells (PBMC) both freshly isolated from SLE patients and cultured with treatment. The levels of IgG autoantibodies and cytokines in cell culture media and serum samples from lupus-prone mice treated with a natural, powerful antioxidant isotonix OPC-3 were measured by ELISA kits. IgG antibody deposition in glomeruli of the mice ed potential drug treatment of SLE with lesser adverse effects through reducing the aberrant lipid metabolism with an effective antioxidant.Hyperthecosis syndrome is a common endocrine system metabolic disorder in women of childbearing age. The main symptoms are elevated androgen levels, abnormal ovulation, and excessive oxidative stress. Currently, there is no effective treatment for hyperthecosis syndrome. α(1)-adrenergic receptor (ADRA1) is involved in the metabolic pathway of ovarian steroid hormone. This study studied the mechanism of the ADRA1 inhibitor terazosin in the LH-induced bovine theca cells in vitro. We found that terazosin regulates the expression of steroidogenic factor 1 (SF1) and downstream genes through the ERK1/2 pathway, reducing androgen content. Terazosin promotes the expression of HSP90 and reduces the activity of iNOS. anti-PD-L1 antibody inhibitor In addition, Terazosin up-regulates the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream gene γ-GCS, which improves the ability of theca cells to resist oxidative stress. This study provides a reference for the treatment of human hyperthecosis syndrome.We have recently found that penicillamine, a classic copper-chelating thiol-drug for Wilson’s disease, can delay tetrachlorohydroquinone (TCHQ) autooxidation via a previously unrecognized redox-activity. However, its underlying molecular mechanism remains not fully understood. In this study, we found, interestingly and unexpectedly, that superoxide dismutase (SOD) can significantly shorten the delay of TCHQ autooxidation by penicillamine, but not by ascorbate; SOD can also markedly increase the yields of the oxidized form of penicillamine. Similar effects were observed with a recently-developed specific and sensitive superoxide anion radical (O2•-) probe CT-02H, which was also employed to successfully measure O2•- generated from both TCHQ and TCHQ/penicillamine systems for the first time. More importantly, addition of extra O2•- (KO2/18-crown-6) can further prolong the delaying effects by penicillamine and slow down penicillamine consumption. Taken together, an unexpected critical role of O2•- in TCHQ/penicillamine interaction was proposed O2•- may regenerate penicillamine, thereby continuously reducing TCSQ•- to TCHQ and finally delaying TCHQ autooxidation; In contrast, if O2•- were eliminated, which can not only markedly change the reaction equilibrium, accelerate the rate of interaction, and ultimately shorten the delay of TCHQ autooxidation by penicillamine, but can also accelerate penicillamine oxidation to form its corresponding disulfide solely via redox reaction without any minor nucleophilic reaction.