Activity

  • Riley posted an update 9 months, 1 week ago

    Testosterone regulates the male reproductive system and acts directly or indirectly on nearly all systems during fetal, pubertal and adult life. Testosterone homeostasis depends on its synthesis and degradation. The major biotransformation reactions are hydroxylation by different cytochrome P450 (CYP) isoforms. There are no described methods to determine the profile of testosterone-hydroxylated metabolites in human urine. The aim of this study was to develop an analytical method to determine testosterone-hydroxylated metabolites in human urine using UPLC-MS. Seven testosterone-hydroxylated metabolites, androstenedione, and testosterone, were identified by comparison of their tret and positive electrospray ionization (ESI+) data, with those of analytical standards. The method developed is sensitive, specific, repeatable, and precise. Limits of detection and quantitation for all compounds ranged from 1.360 to 13.054 ng/ml and 4.234-39.679 ng/ml, respectively. The percentages of recovery were between 81.2 and 128.8%. The applicability of the analytical method was confirmed by analysis of urine samples obtained from two groups of healthy men (25-30 and 50-75 years old). All analytes were identified with slightly different metabolites profiles in both groups. In conclusion, the UPLC-MS method developed here was validated for the analysis of testosterone-hydroxylated metabolites in human urine. A novel fast room temperature cloud point extraction (RT-CPE) procedure for preconcentration and spectrophotometric determination of phosphate based on the heteropoly blue formation was developed. The proposed method includes the formation of yellow molybdoantymonatophosphoric heteropoly complex, its extraction into Triton X-100 micellar phase obtained at room temperature and reduction of heteropoly complex by ascorbic acid solution in ethanol and absorbance measurement of heteropoly blue at 790 nm. Under optimal conditions (1% (v/v) of Triton X-100 and 0.05 M of ammonium benzoate for initiating of RT-CPE; 0.13 M ethanolic solution of ascorbic acid for reduction of heteropoly complex and dilution of surfactant rich phase), the calibration graph is linear in the range of phosphate concentrations of 1.58-63 μg L-1. The proposed RT-CPE procedure has been successfully applied to preconcentration phosphates and its spectrophotometric determination in water samples. N-glycosylation plays an essential role in regulating protein folding and function in eukaryotic cells. Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH) has proven useful as a data independent acquisition (DIA) MS method for analysis of glycoproteins and their glycan modifications. By separating the entire m/z range into consecutive isolation windows, DIA-MS allows comprehensive MS data acquisition and high-sensitivity detection of molecules of interest. Variable width DIA windows allow optimal analyte measurement, as peptide ions are not evenly distributed across the full m/z range. However, the m/z distribution of glycopeptides is different to that of unmodified peptides because of their large glycan structures. Here, we improved the performance of DIA glycoproteomics by using variable width windows optimized for glycopeptides. This method allocates narrow windows at m/z ranges rich in glycopeptides, improving analytical specificity and performance. We show that related glycoforms must fall in separate windows to allow accurate glycopeptide measurement. We demonstrate the utility of the method by comparing the cell wall glycoproteomes of wild-type and N-glycan biosynthesis deficient yeast and showing improved measurement of glycopeptides with different glycan structures. Our results highlight the importance of appropriately optimized DIA methods for measurement of post-translationally modified peptides. The mechanisms underlying metabolic and reproductive dysfunction caused by arrhythmic circadian clock and their involvement in polycystic ovary syndrome (PCOS) are not understood. Here, we addressed this issue using rats with constant light or darkness exposure for 8 weeks and human leukocytes and serum of PCOS and non-PCOS patients. Additionally, we utilized HepG2 cells and KGN cells to verify the molecular mechanisms. The arrhythmic expressions of circadian clock genes due to constant darkness induced the metabolic and reproductive hallmarks of PCOS in rats. After exposure to constant darkness, decreased brain and muscle ARNT-like protein 1 (BMAL1) promoted insulin resistance via glucose transporter 4 (GLUT4), and decreased period (PER) 1 and PER2 promoted androgen excess via insulin-like growth factor-binding protein 4 (IGFBP4) and sex hormone binding globulin (SHBG) in the liver. Hyperinsulinemia and hyperandrogenism shared a bidirectional link promoting aberrant expression of circadian genes and inducing apoptosis of ovarian granulosa cells. Notably, the altered expressions of circadian clock genes in darkness-treated rats matched those of PCOS patients. Furthermore, melatonin treatment relieved the hyperinsulinemia and hyperandrogenism of darkness-treated rats via BMAL1, PER1, and PER2. Restoring normal light/dark exposure for 2 weeks reversed these conditions via BMAL1. In conclusion, our findings elucidated the critical function of circadian clock genes, especially BMAL1, PER1, and PER2 in PCOS, which might aid the development of feasible preventive and therapeutic strategies for PCOS in women with biorhythm disorder. The sexually transmitted infection gonorrhea, caused by the Gram-negative bacterium Neisseria gonorrhoeae, can cause urethritis, cervicitis, and systemic disease, among other manifestations. N. gonorrhoeae has rapidly rising incidence along with increasing levels of antibiotic resistance to a broad range of drugs including first-line treatments. learn more The rise in resistance has led to fears of untreatable gonorrhea causing substantial disease globally. In this review, we will describe multiple approaches being undertaken to slow and control this spread of resistance. First, a number of old drugs have been repurposed and new drugs are being developed with activity against Neisseria gonorrhoeae. Second, vaccine development, long an important goal, is advancing. Third, new diagnostics promise rapid detection of antibiotic resistance and a shift from empiric to tailored treatment. The deployment of these new tools for addressing the challenge of antibiotic resistance will require careful consideration to provide optimal care for all patients while extending the lifespan of treatment regimens.

Skip to toolbar