-
Bartlett posted an update 7 months, 2 weeks ago
Molecular hydrogen (H2) is a physiologically inert gas. However, during the last 10 years, increasing evidence has revealed its biological functions under pathological conditions. More specifically, H2 has protective effects against a variety of diseases, particularly nervous system disorders, which include ischemia/reperfusion injury, traumatic injury, subarachnoid hemorrhage, neuropathic pain, neurodegenerative diseases, cognitive dysfunction induced by surgery and anesthesia, anxiety, and depression. In addition, H2 plays protective roles mainly through anti-oxidation, anti-inflammation, anti-apoptosis, the regulation of autophagy, and preservation of mitochondrial function and the blood-brain barrier. Further, H2 is easy to use and has neuroprotective effects with no major side-effects, indicating that H2 administration is a potential therapeutic strategy in clinical settings. Here we summarize the H2 donors and their pharmacokinetics. Meanwhile, we review the effectiveness and safety of H2 in the treatment of various nervous system diseases based on preclinical and clinical studies, leading to the conclusion that H2 can be a simple and effective clinical therapy for CNS diseases such as ischemia-reperfusion brain injury, Parkinson’s disease, and diseases characterized by cognitive dysfunction. The potential mechanisms involved in the neuroprotective effect of H2 are also analyzed.
This study evaluated the effect of formalin fixation for near-infrared (NIR) fluorescence imaging of an antibody-dye complex (panitumumab-IRDye800CW) that was intravenously administered to patients with head and neck squamous cell carcinoma (HNSCC) scheduled to undergo surgery of curative intent.
HNSCC patients were infused with 25 or 50mg of panitumumab-IRDye800CW followed by surgery 1-5days later. Following resection, primary tumor specimens were imaged in a closed-field fluorescence imaging device, before and after formalin fixation. The fluorescence images of formalin-fixed specimens were compared with images prior to formalin fixation. Regions of interest were drawn on the primary tumor and on the adjacent normal tissue on the fluorescence images. The mean fluorescence intensity (MFI) and tumor-to-background ratios (TBRs) of the fresh and formalin-fixed tissues were compared.
Of the 30 enrolled patients, 20 tissue specimens were eligible for this study. Formalin fixation led to an average of 10% shrinkage in tumor specimen size (p < 0.0001). Tumor MFI in formalin-fixed specimens was on average 10.9% lower than that in the fresh specimens (p = 0.0002). However, no statistical difference was found between the TBRs of the fresh specimens and those of the formalin-fixed specimens (p = 0.85).
Despite the 11% decrease in MFI between fresh and formalin-fixed tissue specimens, the relative difference between tumor and normal tissue as measured in TBR remained unchanged. This data suggests that evaluation of formalin-fixed tissue for assessing the accuracy of fluorescence-guided surgery approaches could provide a valid, yet more flexible, alternative to fresh tissue analysis.
NCT02415881.
NCT02415881.
In the stressful context of the coronavirus disease 2019 (COVID-19) pandemic, some reports have raised concerns regarding psychiatric disorders with the use of hydroxychloroquine. In this study, we reviewed all psychiatric adverse effects with hydroxychloroquine in COVID-19 patients, as well as in other indications, reported in VigiBase, the World Health Organization’s (WHO) global database of individual case safety reports.
First, we analyzed all psychiatric adverse effects, including suicide, of hydroxychloroquine in COVID-19 patients reported to 16 June 2020. ITF2357 concentration We also performed disproportionality analysis to investigate the risk of reporting psychiatric disorders with hydroxychloroquine compared with remdesivir, tocilizumab, or lopinavir/ritonavir prescribed in COVID-19 patients. We used reporting odds ratios (RORs) and their 95% confidence intervals (CIs) to calculate disproportionality. Second, we sought to examine the psychiatric safety profile of hydroxychloroquine in other indications (before 2020)lance analysis suggests that COVID-19 patients exposed to hydroxychloroquine experienced serious psychiatric disorders, and, among these patients, some committed suicide. Further real-world studies are needed to quantify the psychiatric risk associated with hydroxychloroquine during the COVID-19 pandemic.Cobalamin (Cbl, vitamin B12) deficiency or inborn errors of Cbl metabolism can produce neurologic disorders resistant to therapies, including cognitive dysfunction, mild mental retardation, memory impairment, and confusion. We used Cd320 KO mouse as a model for studying the pathological mechanisms of these disorders. Cd320 encodes the receptor (TCblR) needed for the cellular uptake of Cbl in the brain. The Cd320-/- mouse model presented an impaired learning memory that could be alleviated by a moderate stress, which produced also a greater increase of plasma corticosterone, compared to wild type animals. The present study investigated such a putative rescue mechanism in Cbl-deficient mice. At the molecular level in the brain of Cd320-/- mouse, the decreased methylation status led to a downregulation of glucocorticoid nuclear receptor (GR)/PPAR-gamma co-activator-1 alpha (PGC-1α) pathway. This was evidenced by the decreased expression of GR, decreased methylation of GR and PGC1α, and decreased dimerization and interaction of GR with PGC1α. This led to altered synaptic activity evidenced by decreased interaction between the NMDA glutamatergic receptor and the PSD95 post-synaptic protein and a lower expression of Egr-1 and synapsin 1, in Cd320-/- mice compared to the wild type animals. Intraperitoneal injection of hydrocortisone rescued these molecular changes and normalized the learning memory tests. Our study suggests adaptive influences of moderate stress on loss of memory and cognition due to brain Cbl deficiency. The GR pathway could be a potential target for innovative therapy of cognitive manifestations in patients with poor response to conventional Cbl treatment.