Activity

  • Peacock posted an update 7 months, 2 weeks ago

    32 ppm, provides an expected limit of detection as low as 20 ppb of acetone. Additionally, this work presents an alternative resonator design with folded flexure anchors that provide a drastic reduction of the sensor temperature sensitivity and mitigate the impact of a fluid flow inherent to the calibration system.A C3-symmetric acylhydrazone-based low molecular weight gelator (BHTP) bearing three pyridine units was synthesized and it was found to form a stable supramolecular gel in the mixture solvent of DMSO-H2O. The morphology of the gel as observed by FE-SEM showed a dense sheet structure. Hydrogen bonding and π-π stacking between the gelators were determined as the non-covalent interactions for the gelation, which were investigated thoroughly using XRD, UV-Vis, 1H NMR and FT-IR instruments. BHTP could form pH tolerant supramolecular gels in the widest range of pH values from 1 to 11. The DMSO-H2O (v  v = 1  1) gel exhibited selective response to OH- over a series of other anions through the color change from a white gel to a yellow solution, and the OH- response mechanism was proved by 1H NMR experiments. In solution, the lowest detection limit of BHTP for OH- was calculated to be as low as 1.62 × 10-7 M via UV-Vis titration experiments. Finally, encapsulation and controlled release of small molecules such as rhodamine B, crystal violet and methyl orange have been successfully carried out, demonstrating the potential for drug delivery application of this C3-symmetric supramolecular gel. This work opens a novel avenue for the preparation of supramolecular gel-based multiple functional smart materials.COVID-19 implications are still a threat to global health. In the face of this pandemic, food and nutrition are key issues that can boost the immune system. The bioactivity of functional foods and nutrients (probiotics, prebiotics, water- and fat-soluble vitamins, minerals, flavonoids, glutamine, arginine, nucleotides, and PUFAs) contributes to immune system modulation, which establishes the status of nutrients as a factor of immune competence. These foods can contribute, especially during a pandemic, to the minimization of complications of SARS-CoV-2 infection. Therefore, it is important to support the nutritional strategies for strengthening the immune status, associated with good eating habits, as a way to confront COVID-19.Rolling liquid droplets are of great interest for various applications including self-cleaning of surfaces. Interfacial resistance, in terms of pinning and shear rate, has a critical role in droplet rolling dynamics on hydrophobic surfaces. Lowering the interfacial resistance requires reducing the droplet wetting length and droplet fluid contact area on hydrophobic surfaces. The present study examines droplet rolling behavior on inclined hydrophobized metallic meshes, which facilitate reduced wetting length and contact area of droplets. Experiments are carried out using a high-speed recording facility to evaluate droplet translational and rolling velocities over various sizes of hydrophobized meshes. The flow field inside the droplet fluid is simulated in 3-dimensional space mimicking the conditions of experiments. The findings reveal that droplet translational velocity attains significantly higher values for hydrophobized meshes than plain hydrophobized metallic surfaces. Increasing the mesh size enhances the droplet velocity and reduces the droplet kinetic energy dissipation created by interfacial surface tension and shear forces. Increasing the droplet volume enhances the droplet velocity despite the fact that pinning and frictional forces increase at the liquid-mesh interface. Hence, for rolling droplets on the mesh surface, the increase in the gravitational force component becomes larger than the increase in interfacial pinning and frictional forces.Alcohol induces inflammation and oxidative stress with the dysregulation of proinflammatory cytokines, which are implicated in the pathogenesis of alcoholic liver injury. Melanoidins are known to exert an antioxidant effect, however, their function in inhibiting alcohol-induced inflammation is unclear. In this study, we examined the role of melanoidins from Chinese traditional vinegar powder in terms of their anti-inflammatory and antioxidant properties in RAW 264.7 macrophages and elucidated their mechanisms of function. In macrophages, melanoidins significantly suppress the mRNA expression of interleukin (Il)-6, Il-1β and tumor necrosis factor α (Tnf-α) with a concomitant inhibitory effect on IL-1β, IL-6 and TNFα secretion, which are increased by ethanol. In addition, ethanol significantly increases the cellular reactive oxygen species (ROS) levels and the expression of cytochrome β-245 and beta polypeptide (Cybb), which are repressed by melanoidins to basal level. However, the expression of genes related to oxidative stress significantly decreases in response to ethanol, while it is significantly increased by melanoidins. Importantly, treatment with ethanol led to significant decreases in SIRT1 and SIRT3 transcription, translation, and activation, as well as the nicotinamide adenine dinucleotide (NAD+) levels. Interestingly, all the decreases were markedly attenuated by melanoidins. Ethanol promoted the expression of proinflammatory genes, whereas coincubation with resveratrol (a potent SIRT agonist) inhibited this effect. Conversely, the addition of sirtinol (a known SIRT inhibitor) augmented the proinflammatory gene expression. Taken together, our findings suggest that melanoidins exert anti-inflammatory and antioxidant functions via abolishing decreases in SIRT1 and SIRT3 expression and cellular NAD+ levels in ethanol-induced macrophages and may serve as a new therapeutic agent for the prevention of alcohol-induced cell damage.Microfluidics is an emerging and multidisciplinary field that is of great interest to manufacturers in medicine, biotechnology, and chemistry, as it provides unique tools for the development of point-of-care diagnostics, organs-on-chip systems, and biosensors. Polymeric microfluidics, unlike glass and silicon, offer several advantages such as low-cost mass manufacturing and a wide range of beneficial material properties, which make them the material of choice for commercial applications and high-throughput systems. Among polymers used for the fabrication of microfluidic devices, polydimethylsiloxane (PDMS) still remains the most widely used material in academia due to its advantageous properties, such as excellent transparency and biocompatibility. However, commercialization of PDMS has been a challenge mostly due to the high cost of the current fabrication strategies. Selleck AT7867 Moreover, specific surface modification and functionalization steps are required to tailor the surface chemistry of PDMS channels (e.g. biomolecule immobilization, surface hydrophobicity and antifouling properties) with respect to the desired application.

Skip to toolbar