Activity

  • Hassan posted an update 7 months, 2 weeks ago

    Furthermore, we propose temperature transferable BUMPer models that are indirectly constructed from the free energy decomposition scheme. Changes in CG interactions and corresponding structures are faithfully recapitulated by this framework. We further extend BUMPer to examine its ability to predict the structure, density, and diffusion anomalies by employing an alternative analysis based on structural correlations and pairwise potential forms to predict such anomalies. The presented analysis highlights the existence of these anomalies in the low-temperature regime and overcomes potential transferability problems.We estimated the residual entropy of Ice Ih by the recently developed simulation protocol, namely, the combination of the replica-exchange Wang-Landau algorithm and multicanonical replica-exchange method. We employed a model with the nearest neighbor interactions on the three-dimensional hexagonal lattice, which satisfied the ice rules in the ground state. The results showed that our estimate of the residual entropy is in accordance with various previous results. In this article, we not only give our latest estimate of the residual entropy of Ice Ih but also discuss the importance of the uniformity of a random number generator in Monte Carlo simulations.In this paper, the iteration scheme associated with single reference coupled cluster theory has been analyzed using nonlinear dynamics. The phase space analysis indicates the presence of a few significant cluster amplitudes, mostly involving valence excitations, that dictate the dynamics, while all other amplitudes are enslaved. Starting with a few initial iterations to establish the inter-relationship among the cluster amplitudes, a supervised machine learning scheme with a polynomial kernel ridge regression model has been employed to express each of the enslaved amplitudes uniquely in terms of the former set of amplitudes. The subsequent coupled cluster iterations are restricted solely to determine those significant excitations, and the enslaved amplitudes are determined through the already established functional mapping. We will show that our hybrid scheme leads to a significant reduction in the computational time without sacrificing the accuracy.The identification of peptide sequences and their post-translational modifications (PTMs) is a crucial step in the analysis of bottom-up proteomics data. The recent development of open modification search (OMS) engines allows virtually all PTMs to be searched for. This not only increases the number of spectra that can be matched to peptides but also greatly advances the understanding of the biological roles of PTMs through the identification, and the thereby facilitated quantification, of peptidoforms (peptide sequences and their potential PTMs). Whereas the benefits of combining results from multiple protein database search engines have been previously established, similar approaches for OMS results have been missing so far. Here we compare and combine results from three different OMS engines, demonstrating an increase in peptide spectrum matches of 8-18%. The unification of search results furthermore allows for the combined downstream processing of search results, including the mapping to potential PTMs. Finally, we test for the ability of OMS engines to identify glycosylated peptides. The implementation of these engines in the Python framework Ursgal facilitates the straightforward application of the OMS with unified parameters and results files, thereby enabling yet unmatched high-throughput, large-scale data analysis.The authors wish to make the following corrections to this paper […].More than 50% of all gynecologic tumors can be classified as rare (defined as an incidence of ≤6 per 100,000 women) and usually have a poor prognosis owing to delayed diagnosis and treatment. In contrast to almost all other common solid tumors, the treatment of rare gynecologic tumors (RGT) is often based on expert opinion, retrospective studies, or extrapolation from other tumor sites with similar histology, leading to difficulty in developing guidelines for clinical practice. Currently, gynecologic cancer research, due to distinct scientific and technological challenges, is lagging behind. Moreover, the overall efforts for addressing these challenges are fragmented across different European countries and indeed, worldwide. The GYNOCARE, COST Action CA18117 (European Network for Gynecological Rare Cancer Research) programme aims to address these challenges through the creation of a unique network between key stakeholders covering distinct domains from concept to cure basic research on RGT, biobanking, bridging with industry, and setting up the legal and regulatory requirements for international innovative clinical trials. Baf-A1 On this basis, members of this COST Action, (Working Group 1, “Basic and Translational Research on Rare Gynecological Cancer”) have decided to focus their future efforts on the development of new approaches to improve the diagnosis and treatment of RGT. Here, we provide a brief overview of the current state-of-the-art and describe the goals of this COST Action and its future challenges with the aim to stimulate discussion and promote synergy across scientists engaged in the fight against this rare cancer worldwide.Eugenyl-β-D-glucopyranoside, also referred to as Citrusin C, is a natural glucoside found among others in cloves, basil and cinnamon plants. Eugenol in a form of free aglycone is used in perfumeries, flavourings, essential oils and in medicinal products. Synthetic Citrusin C was incubated with human saliva in several in vitro models together with substrate-specific enzyme and antibiotics (clindamycin, ciprofloxacin, amoxicillin trihydrate and potassium clavulanate). Citrusin C was detected using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Citrusin C was completely degraded only when incubated with substrate-specific A. niger glucosidase E.C 3.2.1.21 (control sample) and when incubated with human saliva (tested sample). The addition of antibiotics to the above-described experimental setting, stopped Citrusin C degradation, indicating microbiologic origin of hydrolysis observed. Our results demonstrate that Citrusin C is subjected to complete degradation by salivary/oral cavity microorganisms.

Skip to toolbar