Activity

  • Adkins posted an update 1 year ago

    The aim was to characterise patterns and predictability of aeration changes in the ipsilateral maxillary sinus during intensity-modulated radiotherapy (IMRT) for sinonasal cancer (SNC), and in a sample evaluate the dosimetric effects of aeration changes for both photon and proton therapy.

    The study included patients treated withIMRT for SNC in a single institution in 2009-2017. The volume of air in the ipsilateral maxillary sinus was recorded in1578 daily cone beam computer tomography (CBCT) from 53 patients.Patterns of changing air volumes were categorised as ‘

    ‘,

    ‘, ‘

    ‘, or ‘

    ‘. For the prediction analysis, categorisation was performed based both on the entire treatment course and the first five fractions (F1-5).Photon and proton therapy plans were generated for four patients, the one from each category with the largest aeration variation. Synthetic CT images were generated for each CBCT and all plans were recalculated on the daily synthetic CTs.

    The absolute volume of air varied considerably durire evident for neither IMRT nor proton therapy for the patients investigated.Notch signaling is activated in the intestinal epithelial cells (IECs) of patients with inflammatory bowel disease (IBD), and contributes to mucosal regeneration. Our previous study indicated that TNF-α and Notch signaling may synergistically promote the expression of the intestinal stem cell (ISC) marker OLFM4 in human IECs. In the present study, we investigated the gene regulation and function of OLFM4 in human IEC lines. We confirmed that TNF-α and Notch synergistically upregulate the mRNA expression of OLFM4. Luciferase reporter assay showed that OLFM4 transcription is regulated by the synergy of TNF-α and Notch. At the protein level, synergy between TNF-α and Notch promoted cytoplasmic accumulation of OLFM4, which has potential anti-apoptotic properties in human IECs. Analysis of patient-derived tissues and organoids consistently showed cytoplasmic accumulation of OLFM4 in response to NF-κB and Notch activation. Cytoplasmic accumulation of OLFM4 in human IECs is tightly regulated by Notch and TNF-α in synergy. Such cytoplasmic accumulation of OLFM4 may have a cell-protective role in the inflamed mucosa of patients with IBD.Clinical evidence suggests that type 2 diabetes therapy can greatly benefit from the suppression of reactive oxygen species generation and the activation or restoration of cellular antioxidant mechanisms. In human, NADPH oxidase (NOX) is the main producer of reactive oxygen species (ROS) that supress the activity of endogenous antioxidant enzymes. In the present study, the antioxidant potential of Gedunin was studied. In silico findings reveal its strong binding affinity with NOX5 C terminal HSP90 binding site that disrupts NOX5 stability and its ability to generate ROS, leading to restoration antioxidant enzymes activities. It was found that Gedunin suppressed hyperglycaemia induced oxidative stress in an in vitro RBC model and markedly reversed glucose induced changes including haemoglobin glycosylation and lipid peroxidation. A significant restoration of activities of cellular antioxidant enzymes; superoxide dismutase, catalase and glutathione peroxidase in the presence of Gedunin revealed its ability to reduce oxidative stress. These results substantiated Gedunin as a bona fide inhibitor of human NOX5 and a ROS scavenging antioxidant with promising therapeutic attributes including its natural origin and inhibition of multiple diabetic targets.

    Previous studies showed that suppression of pyruvate carboxylase (PC) expression in highly invasive breast cancer cell line, MDA-MB-231 inhibits cell growth as a consequence of the impaired cellular biosynthesis. However, the precise cellular mechanism underlying this growth restriction is unknown.

    We generated the PC knockdown (PCKD) MDA-MB-231cells and assessed their phenotypic changes by fluorescence microscopy, proliferation, apoptotic, cell cycle assays and proteomics.

    PC knockdown MDA-MB-231cells had a low percentage of cell viability in association with accumulation of abnormal cells with large or multi-nuclei. Flow cytometric analysis of annexin V-7-AAD positive cells showed that depletion of PC expression triggers apoptosis with the highest rate at day 4. The increased rate of apoptosis is consistent with increased cleavage of procaspase 3 and poly (ADP-Ribose) polymerase. Cell cycle analysis showed that the apoptotic cell death was associated with G2/M arrest, in parallel with marked reduction of cyclin B levels. Proteomic analysis of PCKD cells identified 9 proteins whose expression changes were correlated with the degree of apoptosis and G2/M cell cycle arrest in the PCKD cells. STITCH analysis indicated 3 of 9 candidate proteins, CCT3, CABIN1 and HECTD3, that form interactions with apoptotic and cell cycle signaling networks linking to PC via MgATP.

    Suppression of PC in MDA-MB-231cells induces G2/M arrest, leading to apoptosis. Proteomic analysis supports the potential involvement of PC expression in the aberrant cell cycle and apoptosis, and identifies candidate proteins responsible for the PC-mediated cell cycle arrest and apoptosis in breast cancer cells.

    Our results highlight the possibility of the use of PC as an anti-cancer drug target.

    Our results highlight the possibility of the use of PC as an anti-cancer drug target.TROP2 is a type I transmembrane glycoprotein originally identified in human trophoblast cells that is overexpressed in several types of cancer. MG149 clinical trial To better understand the role of TROP2 in cancer, we herein aimed to develop a sensitive and specific anti-TROP2 monoclonal antibody (mAb) for use in flow cytometry, Western blot, and immunohistochemistry using a Cell-Based Immunization and Screening (CBIS) method. Two mice were immunized with N-terminal PA-tagged and C-terminal RAP/MAP-tagged TROP2-overexpressed Chinese hamster ovary (CHO)-K1 cells (CHO/PA-TROP2-RAP-MAP), and hybridomas showing strong signals from PA-tagged TROP2-overexpressed CHO-K1 cells (CHO/TROP2-PA) and weak-to-no signals from CHO-K1 cells were selected using flow cytometry. We demonstrated using flow cytometry that the established anti-TROP2 mAb, TrMab-29 (mouse IgG1 kappa), detected TROP2 in MCF7 breast cancer cell line as well as CHO/TROP2-PA cells. Western blot analysis showed a 40 kDa band in lysates prepared from both CHO/TROP2-PA and MCF7 cells.

Skip to toolbar