Activity

  • Meincke posted an update 7 months, 2 weeks ago

    The outer membrane (OM) of Gram-negative bacteria poses a barrier to antibiotic entry due to its high impermeability. Thus, there is an urgent need to study the function and biogenesis of the OM. In Enterobacterales, an order of bacteria with many pathogenic members, one of the components of the OM is enterobacterial common antigen (ECA). We have known of the presence of ECA on the cell surface of Enterobacterales for many years, but its properties have only more recently begun to be unraveled. ECA is a carbohydrate antigen built of repeating units of three amino sugars, the structure of which is conserved throughout Enterobacterales. There are three forms of ECA, two of which (ECAPG and ECALPS) are located on the cell surface, while one (ECACYC) is located in the periplasm. Awareness of the importance of ECA has increased due to studies of its function that show it plays a vital role in bacterial physiology and interaction with the environment. this website Here, we review the discovery of ECA, the pathways for the biosynthesis of ECA, and the interactions of its various forms. In addition, we consider the role of ECA in the host immune response, as well as its potential roles in host-pathogen interaction. Furthermore, we explore recent work that offers insights into the cellular function of ECA. This review provides a glimpse of the biological significance of this enigmatic molecule.Many microorganisms produce resting cells with very low metabolic activity that allow them to survive phases of prolonged nutrient or energy stress. In cyanobacteria and some eukaryotic phytoplankton, the production of resting stages is accompanied by a loss of photosynthetic pigments, a process termed chlorosis. Here, we show that a chlorosis-like process occurs under multiple stress conditions in axenic laboratory cultures of Prochlorococcus, the dominant phytoplankton linage in large regions of the oligotrophic ocean and a global key player in ocean biogeochemical cycles. In Prochlorococcus strain MIT9313, chlorotic cells show reduced metabolic activity, measured as C and N uptake by Nanoscale secondary ion mass spectrometry (NanoSIMS). However, unlike many other cyanobacteria, chlorotic Prochlorococcus cells are not viable and do not regrow under axenic conditions when transferred to new media. Nevertheless, cocultures with a heterotrophic bacterium, Alteromonas macleodii HOT1A3, allowed Prochlorococcus to survive nutrient starvation for months. We propose that reliance on co-occurring heterotrophic bacteria, rather than the ability to survive extended starvation as resting cells, underlies the ecological success of ProchlorococcusIMPORTANCE The ability of microorganisms to withstand long periods of nutrient starvation is key to their survival and success under highly fluctuating conditions that are common in nature. Therefore, one would expect this trait to be prevalent among organisms in the nutrient-poor open ocean. Here, we show that this is not the case for Prochlorococcus, a globally abundant and ecologically important marine cyanobacterium. Instead, Prochlorococcus relies on co-occurring heterotrophic bacteria to survive extended phases of nutrient and light starvation. Our results highlight the power of microbial interactions to drive major biogeochemical cycles in the ocean and elsewhere with consequences at the global scale.Amino acid metabolism is crucial for fungal growth and development. Ureohydrolases produce amines when acting on l-arginine, agmatine, and guanidinobutyrate (GB), and these enzymes generate ornithine (by arginase), putrescine (by agmatinase), or GABA (by 4-guanidinobutyrase or GBase). Candida albicans can metabolize and grow on arginine, agmatine, or guanidinobutyrate as the sole nitrogen source. Three related C. albicans genes whose sequences suggested that they were putative arginase or arginase-like genes were examined for their role in these metabolic pathways. Of these, Car1 encoded the only bona fide arginase, whereas we provide evidence that the other two open reading frames, orf19.5862 and orf19.3418, encode agmatinase and guanidinobutyrase (Gbase), respectively. Analysis of strains with single and multiple mutations suggested the presence of arginase-dependent and arginase-independent routes for polyamine production. CAR1 played a role in hyphal morphogenesis in response to arginine, and the virulence of a triple mutant was reduced in both Galleria mellonella and Mus musculus infection models. In the bloodstream, arginine is an essential amino acid that is required by phagocytes to synthesize nitric oxide (NO). However, none of the single or multiple mutants affected host NO production, suggesting that they did not influence the oxidative burst of phagocytes.IMPORTANCE We show that the C. albicans ureohydrolases arginase (Car1), agmatinase (Agt1), and guanidinobutyrase (Gbu1) can orchestrate an arginase-independent route for polyamine production and that this is important for C. albicans growth and survival in microenvironments of the mammalian host.Extracellular hydrogen peroxide can induce oxidative stress, which can cause cell death if unresolved. However, the cellular mediators of H2O2-induced cell death are unknown. We determined that H2O2-induced cytotoxicity is an iron-dependent process in HAP1 cells and conducted a CRISPR/Cas9-based survival screen that identified four genes that mediate H2O2-induced cell death POR (encoding cytochrome P450 oxidoreductase), RETSAT (retinol saturase), KEAP1 (Kelch-like ECH-associated protein-1), and SLC52A2 (riboflavin transporter). Among these genes, only POR also mediated methyl viologen dichloride hydrate (paraquat)-induced cell death. Because the identification of SLC52A2 as a mediator of H2O2 was both novel and unexpected, we performed additional experiments to characterize the specificity and mechanism of its effect. These experiments showed that paralogs of SLC52A2 with lower riboflavin affinities could not mediate H2O2-induced cell death and that riboflavin depletion protected HAP1 cells from H2O2 toxicity through a specific process that could not be rescued by other flavin compounds. Interestingly, riboflavin mediated cell death specifically by regulating H2O2 entry into HAP1 cells, likely through an aquaporin channel. Our study results reveal the general and specific effectors of iron-dependent H2O2-induced cell death and also show for the first time that a vitamin can regulate membrane transport.IMPORTANCE Using a genetic screen, we discovered that riboflavin controls the entry of hydrogen peroxide into a white blood cell line. To our knowledge, this is the first report of a vitamin playing a role in controlling transport of a small molecule across the cell membrane.

Skip to toolbar