-
Bowling posted an update 7 months, 2 weeks ago
The present study deals with variation in the use of lexico-grammatical patterns and emphasizes the need to embrace individual variation. Targeting the pattern that’s adj (as in that’s right, that’s nice or that’s okay) as a case study, we use a tailor-made Python script to systematically retrieve grammatical and semantic information about all instances of this construction in BNC2014 as well as sociolinguistic information enabling us to study social and individual lexico-grammatical variation among speakers who have used this pattern. check details The dataset amounts to 4,394 tokens produced by 445 speakers using 159 adjective types in 931 conversations. Using detailed descriptive statistics and mixed-effects regression models, we show that while the choice of some adjectives is partly determined by social variables, situational and especially individual variation is rampant overall. Adopting a cognitive-linguistic perspective and relying on the notion of entrenchment, we interpret these findings as reflecting individual speakers’ routines. We argue that computational sociolinguistics is in an ideal position to contribute to the data-driven investigation of individual lexico-grammatical variation and encourage computational sociolinguists to grab this opportunity. For the routines of individual speakers ultimately both underlie and compromise systematic social variation and trigger and steer well-known types of language change including grammaticalization, pragmaticalization and change by invited inference.The Indian health care system lacks the infrastructure to meet the health care demands of the country. Physician and nurse availability is 30 and 50% below WHO recommendations, respectively, and has led to a steep imbalance between the demand for health care and the infrastructure available to support it. Among other concerns, India still struggles with challenges like undernutrition, with 38% of children under the age of five being underweight. Despite these challenges, technological advancements, mobile phone ubiquity and rising patient awareness offers a huge opportunity for artificial intelligence to enable efficient healthcare delivery, by improved targeting of constrained resources. The Saathealth mobile app provides low-middle income parents of young children nflwith interactive children’s health, nutrition and development content in the form of an entertaining video series, a gamified quiz journey and targeted notifications. The app iteratively evolves the user journey based on dynamic data and predic directing limited health resources toward populations that are most resistant to digital first interventions. These and similar AI powered algorithms will allow us to lengthen and deepen the lifetime relationship with our health consumers, making more of them effective, proactive participants in improving children’s health, nutrition and early cognitive development.AI virtual assistants have significant potential to alleviate the pressure on overly burdened healthcare systems by enabling patients to self-assess their symptoms and to seek further care when appropriate. For these systems to make a meaningful contribution to healthcare globally, they must be trusted by patients and healthcare professionals alike, and service the needs of patients in diverse regions and segments of the population. We developed an AI virtual assistant which provides patients with triage and diagnostic information. Crucially, the system is based on a generative model, which allows for relatively straightforward re-parameterization to reflect local disease and risk factor burden in diverse regions and population segments. This is an appealing property, particularly when considering the potential of AI systems to improve the provision of healthcare on a global scale in many regions and for both developing and developed countries. We performed a prospective validation study of the accuracy and safety of the AI system and human doctors. Importantly, we assessed the accuracy and safety of both the AI and human doctors independently against identical clinical cases and, unlike previous studies, also accounted for the information gathering process of both agents. Overall, we found that the AI system is able to provide patients with triage and diagnostic information with a level of clinical accuracy and safety comparable to that of human doctors. Through this approach and study, we hope to start building trust in AI-powered systems by directly comparing their performance to human doctors, who do not always agree with each other on the cause of patients’ symptoms or the most appropriate triage recommendation.Violence against children is a global public health threat of considerable concern. At least half of all children worldwide experience violence every year; globally, the total number of children between the ages of 2 and 17 years who have experienced violence in any given year is one billion. Based on a review of the literature, we argue that there is substantial potential for AI (and associated machine learning and big data), and mHealth approaches to be utilized to prevent and address violence at a large scale. This potential is particularly marked in low- and middle-income countries (LMIC), although whether it could translate into effective solutions at scale remains unclear. We discuss possible entry points for Artificial Intelligence (AI), big data, and mHealth approaches to violence prevention, linking these to the World Health Organization’s seven INSPIRE strategies. However, such work should be approached with caution. We highlight clear directions for future work in technology-based and technology-enmake the case that developing AI and other technological infrastructure will require substantial investment, particularly in LMIC.This study examines how text-based mobile communication practices are performatively constructed as individuals compose messages key-by-key on virtual keyboards, and how these synchronous performances (Mobile interface theory embodied space and locative media. New York, NY Routledge) reflect the iterative process of constructing and maintaining interpersonal relationships. In doing so, this study reports on keystroke-logging analysis (see Writ. Commun. 30, 358-392) in order to observe how participants (N = 10) composed text as part of everyday mobile communication for the period of one week, subsequently producing 179,996 individual keystroke log-file records. Participants used LogKey, a virtual keyboard application made exclusively for this study to run on the Android mobile operating system. Analysis of keystroke log-file data suggest that timing processes of composing text-messages may differ as participants messaged with different categories of interlocutors, composed on different communication applications, and composed paralinguistic features-such as variants of Lol and Haha Thurlow and Brown, (Discourse Anal.