Activity

  • Gustafsson posted an update 9 months ago

    In case of large articular defects, the labrum could be advanced in the cartilage defect to cover it. In case of cartilage flap with reparable margins, this could be reattached with different suture constructs. Neglected GLAD lesions following a chronic trauma or shoulder instability have not been described in literature.

    The definition of GLAD injury has changed over the time. Many authors associate this lesion with shoulder instability, with trauma in abduction and extra rotation, while Neviaser’s original definition described stable shoulders following a trauma in adduction.

    The definition of GLAD injury has changed over the time. Many authors associate this lesion with shoulder instability, with trauma in abduction and extra rotation, while Neviaser’s original definition described stable shoulders following a trauma in adduction.Tannases are serine esterases that were first discovered in fungi more than one and half centuries ago. They catalyze the hydrolysis of the gallolyl ester bonds in gallotannins to release gallic acid, which is an important intermediate in the chemical and pharmaceutical industries. Since their discovery, fungal tannases have found wide industrial applications, although there is scarce knowledge about these enzymes at the molecular level, including their catalytic and substrate-binding sites. While this lack of knowledge hinders engineering efforts to modify the enzymes, many tannases have been isolated from various fungal strains in a search for the desired enzymatic properties. Here, the first crystal structure of a fungal tannase, that from Aspergillus niger, is reported. The enzyme possesses a typical α/β-hydrolase-fold domain with a large inserted cap domain, which together form a bowl-shaped hemispherical shape with a surface concavity surrounded by N-linked glycans. Gallic acid is bound at the junction of the two domains within the concavity by forming two hydrogen-bonding networks with neighbouring residues. One is formed around the carboxyl group of the gallic acid and involves residues from the hydrolase-fold domain, including those from the catalytic triad, which consists of Ser206, His485 and Asp439. The other is formed around the three hydroxyl groups of the compound, with the involvement of residues mainly from the cap domain, including Gln238, Gln239, His242 and Ser441. Gallic acid is bound in a sandwich-like mode by forming a hydrophobic contact with Ile442. All of these residues are found to be highly conserved among fungal and yeast tannases.While broadening the applicability of (φ/ψ)-dependent target values for the bond angles in the peptide backbone, sequence/conformation categories with too few residues to analyze via previous methods were encountered. this website Here, a method of describing a conformation-dependent library (CDL) using two-dimensional Fourier coefficients is reported where the number of coefficients for individual categories is determined via complete cross-validation. Sample sizes are increased further by selective blending of categories with similar patterns of conformational dependence. An additional advantage of the Fourier-synthesis-based CDL is that it uses continuous functions and has no artifactual steps near the edges of populated regions of φ/ψ space. A set of libraries for the seven main-chain bond angles, along with the ω and ζ angles, was created based on a set of Fourier analyses of 48 368 residues selected from high-resolution models in the wwPDB. This new library encompasses both trans- and cis-peptide bonds and outperforms currently used discrete CDLs.Wild-type human glutathione peroxidase 4 (GPX4) was co-expressed with SBP2 (selenocysteine insertion sequence-binding protein 2) in human HEK cells to achieve efficient production of this selenocysteine-containing enzyme on a preparative scale for structural biology. The protein was purified and crystallized, and the crystal structure of the wild-type form of GPX4 was determined at 1.0 Å resolution. The overall fold and the active site are conserved compared with previously determined crystal structures of mutated forms of GPX4. A mass-spectrometry-based approach was developed to monitor the reaction of the active-site selenocysteine Sec46 with covalent inhibitors. This, together with the introduction of a surface mutant (Cys66Ser), enabled the crystal structure determination of GPX4 in complex with the covalent inhibitor ML162 [(S)-enantiomer]. The mass-spectrometry-based approach described here opens the path to further co-complex crystal structures of this potential cancer drug target in complex with covalent inhibitors.The unique crystallization properties of the antenna protein C-phycocyanin (C-PC) from the thermophilic cyanobacterium Thermosynechococcus elongatus are reported and discussed. C-PC crystallizes in hundreds of significantly different conditions within a broad pH range and in the presence of a wide variety of precipitants and additives. Remarkably, the crystal dimensions vary from a few micrometres, as used in serial crystallography, to several hundred micrometres, with a very diverse crystal morphology. More than 100 unique single-crystal X-ray diffraction data sets were collected from randomly selected crystals and analysed. The addition of small-molecule additives revealed three new crystal packings of C-PC, which are discussed in detail. The high propensity of this protein to crystallize, combined with its natural blue colour and its fluorescence characteristics, make it an excellent candidate as a superior and highly adaptable model system in crystallography. C-PC can be used in technical and methods development approaches for X-ray and neutron diffraction techniques, and as a system for comprehending the fundamental principles of protein crystallography.In standard β-bulges, a residue in one strand of a β-sheet forms hydrogen bonds to two successive residues (`1′ and `2′) of a second strand. Two categories, `classic’ and `G1′ β-bulges, are distinguished by their dihedral angles 1,2-αRβR (classic) or 1,2-αLβR (G1). It had previously been observed that G1 β-bulges are most often found as components of two quite distinct composite structures, suggesting that a basis for further differentiation might exist. Here, it is shown that two subtypes of G1 β-bulges, G1α and G1β, may be distinguished by their conformation (αR or βR) at residue `0′ of the second strand. β-Bulges that are constituents of the composite structure named the β-bulge loop are of the G1α type, whereas those that are constituents of the composite structure named β-link here are of the G1β type. A small proportion of G1β β-bulges, but not G1α β-bulges, occur in other contexts. There are distinctive differences in amino-acid composition and sequence pattern between these two types of G1 β-bulge which may have practical application in protein design.

Skip to toolbar