-
Fabricius posted an update 9 months ago
However, three TMBCs with different spacer lengths did cross-link the two residues, resulting in the formation of new cross-linked ND3/49 kDa subunits. Chemical modification of either ND3 Cys39 or 49 kDa Asp160 blocked the dual cross-linking, ensuring the specificity of the cross-linking. Altogether, this study provides direct evidence that the quinone reaction cavity is indeed accessible from the proposed matrix-side region covered by the ND3 TMH1-2 loop.ConspectusInorganic nanocrystal design has been continuously evolving with a better understanding of the chemical reaction mechanisms between chemical stimuli and nanocrystals. Under certain conditions, molecular compounds can be effective as chemical stimuli to induce transformative reactions of nanocrystals toward new materials that would differ in geometric shape, composition, and crystallographic structure. To explore such evolutionary processes, two-dimensional (2D) layered transition-metal chalcogenide (TMC) nanostructures are an interesting structural platform because they not only exhibit unique transformation pathways due to their structural anisotropy but also present new opportunities for improved material properties for potential applications such as catalysis and energy conversion and storage. The high surface area/volume ratio, interlayer van der Waals (vdW) spacing, and different coordination states between the unsaturated edges and the fully saturated basal planes of the chalcogens are characteristic of 2D layered TMC nanostructures, which subsequently lead to anisotropic chemical processes during chemical transformations, such as regioselective reactions at the interfacial boundaries in the pathways for either porous or solid heteronanostructures. In this Account, we first discuss the chemical reactivity of 2D layered TMC nanostructures. By categorizing the external stimuli in terms of chemical principles, such as Lewis acid-base chemistry, a desirable regioselective chemical reaction can occur with controlled reactivity. In association with the knowledge obtained from the nanoscale chemical reactivity of 2D layered nanocrystals, similar efforts in other important morphologies such as 1D and isotropic 0D nanocrystals are introduced. For instance, for 1D and 0D metal oxide nanocrystals, the effects of molecular stimuli on the atomic-level changes in the crystal lattice are demonstrated, eventually leading to a variety of shape transformations.Molecularly imprinted polymers (MIPs) are a kind of synthetic receptor-like materials. Tucidinostat in vivo They have drawn more and more attention in the past decades. In this work, a facile method was developed to prepare porous magnetic MIPs utilizing metal coordination. The preparation is simply done using conventional oil-in-water emulsifier-free emulsion technology by mixing poly(styrene-co-itaconic acid), oxytetracyclin (OTC), Cu(II), and Fe3O4 magnetic fluid in one pot with a reaction time of 3 h. The product shows high specificity and selectivity toward OTC, as well as an excellent saturation adsorption capacity (62.567 mg/g). Emphasizing that the imprinting factor is 29, which is the highest one among the reported MIPs to the best of our knowledge. Combined with high-performance liquid chromatography, it was used successfully to determine OTC in pork liver, one of the most complex bio-samples. Recoveries are higher than 91.0% with relative standard deviations less than 4.5% at three spiked levels (n = 3). All evidence testifies that the MIPs based on metal coordination show excellent recognition selectivity and specificity, as well as large rebinding capacity. The strategy holds promise as a reliable, extensible, and versatile way for preparing a metal ion-mediated molecular-imprinting polymer.Manipulating the way in which colloidal particles self-organize is a central challenge in the design of functional soft materials. Meeting this challenge requires the use of building blocks that interact with one another in a highly specific manner. Their fabrication, however, is limited by the complexity of the available synthesis procedures. Here, we demonstrate that, starting from experimentally available magnetic colloids, we can create a variety of complex building blocks suitable for hierarchical self-organization through a simple scalable process. Using computer simulations, we compress spherical and cubic magnetic colloids in spherical confinement, and investigate their suitability to form small clusters with reproducible structural and magnetic properties. We find that, while the structure of these clusters is highly reproducible, their magnetic character depends on the particle shape. Only spherical particles have the rotational degrees of freedom to produce consistent magnetic configurations, whereas cubic particles frustrate the minimization of the cluster energy, resulting in various magnetic configurations. To highlight their potential for self-assembly, we demonstrate that already clusters of three magnetic particles form highly nontrivial Archimedean lattices, namely, staggered kagome, bounce, and honeycomb, when focusing on different aspects of the same monolayer structure. The work presented here offers a conceptually different way to design materials by utilizing preassembled magnetic building blocks that can readily self-organize into complex structures.Efficient and safe cleanup for the high-viscosity heavy oil spill has been a worldwide challenge due to its sluggish flowability, while classic absorption methods by electric/solar heating are seriously limited by low efficiency and high fire hazards during heating of highly flammable oil. Facing this dilemma, we reported a novel flame-retardant photothermal conversion nanocoating to endow commercial foams with highly efficient and safe heavy oil cleanup absorption. This multifunctional nanocoating consisting of nano-Fe3O4 and reduced graphene oxide (rGO) that both showed photothermal conversion ability and non-flammable nature can be firmly deposited on the polymer foam skeletons via facile coprecipitation and dip-coating processes. The composite foam showed a tough morphology with high hydrophobicity and low density, thus leading to selective high absorption for various oils and organic solvents. Due to the double photothermal conversion effects of nano-Fe3O4 and rGO, the temperature of the foam can be rapidly heated at a rate of ∼103.