-
Lynggaard posted an update 9 months ago
The golden-crowned (Zonotrichia atricapilla) and white-crowned (Z. leucophrys) sparrows have been presented as a compelling case for rapid speciation. They display divergence in song and plumage with overlap in their breeding ranges implying reproductive isolation, but have almost identical mitochondrial genomes. Previous research proposed hybridization and subsequent mitochondrial introgression as an alternate explanation, but lacked robust nuclear gene trees to distinguish between introgression and incomplete lineage sorting. We test for signatures of these processes between Z. atricapilla and Z. leucophrys, and investigate the relationships among Z. leucophrys subspecies, using mitochondrial sequencing and a reduced representation nuclear genomic dataset. Contrary to the paraphyly evident in mitochondrial gene trees, we confirmed the reciprocal monophyly of Z. atricapilla and Z. leucophrys using large panels of single nucleotide polymorphisms (SNPs). The pattern of cytonuclear discordance is consistent with limited, historical hybridization and mitochondrial introgression, rather than a recent origin and incomplete lineage sorting between recent sister species. We found evidence of nuclear phylogeographic structure within Z. leucophrys with two distinct clades. Altogether, our results indicate deeper divergences between Z. atricapilla and Z. leucophrys than inferred using mitochondrial markers. Our results demonstrate the limitations of relying solely on mitochondrial DNA for taxonomy, and raise questions about the possibility of selection on the mitochondrial genome during temperature oscillations (e.g. during the Pleistocene). Historical mitochondrial introgression facilitated by past environmental changes could cause erroneous dating of lineage splitting in other taxa when based on mitochondrial DNA alone.Montane frogs of the genus Quasipaa Dubois, 1992 occur from southern China to Southeast Asia (Frost 2021). Analyses of mtDNA (Cytb) and nuDNA data (Rag1, Rag2, Rhod, Tyr) for samples from 93 localities throughout its distribution yield a phylogeny. Clades A and B occur in Southeast Asia, clade C in northern Yangtze River, China, clade D in southwestern China, and clades E and F in southeastern China. Results place Q. yei within monophyletic Quasipaa and identify two new species. Based on nuDNA data, the basal split of clade A and B indicates an Indochinese origin of Quasipaa. The west-east diversification of five species across South China (Q. spinosa, Q. exilispinosa, Q. jiulongensis, Q. shini, Q. boulengeri) corresponds to topographic terrains II and III of China. Divergence of species from southeastern China (Q. shini, Q. jiulongensis, Q. spinosa, Q. exilispinosa) and southwestern China (Q. boulengeri) dates to 15.30-16.56 Ma (million years ago). A principal component analysis (PCA) and t-test involving 19 bioclimatic variables identifies significantly different environmental conditions between the two regions. Species’ distribution models (SDM) for Q. spinosa and Q. boulengeri identify the best areas to be eastern and western South China, respectively. Thus, environmental variation appears to have influenced the genetic divergence and distributions of Quasipaa in South China. Mito-nuclear discordance indicates that some individuals of Q. exilispinosa and Q. spinosa hybridized historically.Tribe Plantagineae (Plantaginaceae) comprises ~ 270 species in three currently recognized genera (Aragoa, Littorella, Plantago), of which Plantago is most speciose. Plantago plastomes exhibit several atypical features including large inversions, expansions of the inverted repeat, increased repetitiveness, intron losses, and gene-specific increases in substitution rate, but the prevalence of these plastid features among species and subgenera is unknown. To assess phylogenetic relationships and plastomic evolutionary dynamics among Plantagineae genera and Plantago subgenera, we generated 25 complete plastome sequences and compared them with existing plastome sequences from Plantaginaceae. Using whole plastome and partitioned alignments, our phylogenomic analyses provided strong support for relationships among major Plantagineae lineages. General plastid features-including size, GC content, intron content, and indels-provided additional support that reinforced major Plantagineae subdivisions. Plastomes from Plantago subgenera Plantago and Coronopus have synapomorphic expansions and inversions affecting the size and gene order of the inverted repeats, and particular genes near the inversion breakpoints exhibit accelerated nucleotide substitution rates, suggesting localized hypermutation associated with rearrangements. L-Malic acid The Littorella plastome lacks functional copies of ndh genes, which may be related to an amphibious lifestyle and partial reliance on CAM photosynthesis.Fibromyalgia and small fibre neuropathy are two diseases leading to chronic widespread pain, and it is difficult to differentiate them in order to provide appropriate care. In this review, we will describe the pathophysiological and clinical differences between fibromyalgia and small fibre neuropathy. In fibromyalgia, pain is increased by dysregulation of central pain processing while small fibre neuropathy pain is related to loss or dysfunction of intraepidermal small nerve fibres. Higher pain intensity; stabbing pain and paraesthesia; allodynia; dry eyes/mouth; changed pattern or sweating on body; skin colour alterations/modifications; reduced hair/nail growth on lower extremities; warm or cold hypoesthesia could be more common in small fibre neuropathy whereas headache or temporo-mandibular disorder point toward fibromyalgia. Length-dependent distribution of pain is common in small fibre neuropathy but can also affect the whole body. Anxiety or depression are common in these two diseases, but post-traumatic stress disorder and physical or sexual abuse in childhood or adulthood suggest fibromyalgia. Inflammatory disease or musculoskeletal disease is frequently reported with fibromyalgia whereas metabolic disorders (especially diabetes mellitus), neurotoxic exposure, Sjogren’s syndrome, sarcoidosis, HIV are the main diseases associated with small fibre neuropathy. Skin biopsy, quantitative sensory testing, laser evoked potentials, confocal corneal microscopy or electrochemical skin conductance can help to discriminate between fibromyalgia and small fibre neuropathy.