-
Campbell posted an update 9 months ago
Vulvovaginal atrophy (VVA) is a chronic disease that mostly occurs in postmenopausal women. After menopause, insufficient sex hormones affect the anatomy of the vagina and cause drastic physiological changes. The main histopathological studies of VVA show that postmenopausal estrogen deficiency can lead to the increase of intermediate/parabasal cells, resulting in the loss of lactobacillus, elasticity and lubricity, vaginal epithelial atrophy, pain, dryness. Although the role of estrogen hormones in the treatment of VVA has always been in the past, it is now widely accepted that it also depends on androgens. Estrogen drugs have many side effects. So, Dehydroepiandrosterone(DHEA)is promising for the treatment of VVA, especially when women with contraindications to estrogen have symptoms. This review is expected to understand the latest developments in VVA and the efficacy of DHEA.Hepatocellular carcinoma (HCC) is a typical hyper-vascular solid tumor; aberrantly rich in tumor vascular network contributes to its malignancy. Conventional anti-angiogenic therapies seem promising but transitory and incomplete efficacy on HCC. Vasculogenic mimicry (VM) is one of functional microcirculation patterns independent of endothelial vessels which describes the plasticity of highly aggressive tumor cells to form vasculogenic-like networks providing sufficient blood supply for tumor growth and metastasis. As a pivotal alternative mechanism for tumor vascularization when tumor cells undergo lack of oxygen and nutrients, VM has an association with the malignant phenotype and poor clinical outcome for HCC, and may challenge the classic anti-angiogenic treatment of HCC. Current studies have contributed numerous findings illustrating the underlying molecular mechanisms and signaling pathways supporting VM in HCC. In this review, we summarize the correlation between epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and VM, the role of hypoxia and extracellular matrix remodeling in VM, the involvement of adjacent non-cancerous cells, cytokines and growth factors in VM, as well as the regulatory influence of non-coding RNAs on VM in HCC. Moreover, we discuss the clinical significance of VM in practice and the potential therapeutic strategies targeting VM for HCC. A better understanding of the mechanism underlying VM formation in HCC may optimize anti-angiogenic treatment modalities for HCC.Adenosine modulates many aspects of human physiology and pathophysiology through binding to the adenosine family of G protein-coupled receptors, which are comprised of four subtypes, the A1R, A2AR, A2BR and A3R. Modulation of adenosine receptor function by exogenous agonists, antagonists and allosteric modulators can be beneficial for a number of conditions including cardiovascular disease, Parkinson’s disease, and cancer. Unfortunately, many preclinical drug candidates targeting adenosine receptors have failed in clinical trials due to limited efficacy and/or severe on-target undesired effects. To overcome the key barriers typically encountered when transitioning adenosine receptor ligands into the clinic, research efforts have focussed on exploiting the phenomenon of biased agonism. Biased agonism provides the opportunity to develop ligands that favour therapeutic signalling pathways, whilst avoiding signalling associated with on-target undesired effects. Recent studies have begun to define the structure-function relationships that underpin adenosine receptor biased agonism and establish how this phenomenon can be harnessed therapeutically. In this review we describe the recent advancements made towards achieving therapeutically relevant biased agonism at adenosine receptors.The initial host-pathogen interaction is crucial for the establishment of infection. An improved understanding of the pathophysiology of Mycobacterium tuberculosis (M. tuberculosis) during macrophage infection can aid the development of intervention therapeutics against tuberculosis. learn more M. tuberculosis curli pili (MTP) is a surface located adhesin, involved in the first point-of-contact between pathogen and host. This study aimed to better understand the role of MTP in modulating the intertwined metabolic pathways of M. tuberculosis and its THP-1 macrophage host. Metabolites were extracted from pelleted wet cell mass of THP-1 macrophages infected with M. tuberculosis wild-type V9124 (WT), Δmtp-deletion mutant and the mtp-complemented strains, respectively, via a whole metabolome extraction method using a 131 ratio of chloroformmethanolwater. Metabolites were detected by two-dimensional gas chromatography time-of-flight mass spectrometry. Significant metabolites were determined through univariate and multivariate statistical tests and online pathway databases. Relative to the WT, a total of nine and ten metabolites were significantly different in the Δmtp and complement strains, respectively. All nine significant metabolites were found in elevated levels in the Δmtp relative to the WT. Additionally, of the ten significant metabolites, eight were detected in lower levels and two were detected in higher levels in the complement relative to the WT. The absence of the MTP adhesin resulted in reduced virulence of M. tuberculosis leading to alterations in metabolites involved in carbon, fatty acid and amino acid metabolism during macrophage infection, suggesting that MTP plays an important role in the modulation of host metabolic activity. These findings support the prominent role of the MTP adhesin as a virulence factor as well as a promising biomarker for possible diagnostic and therapeutic intervention.Edwardsiella anguillarum is one of the common bacterial pathogens for the cultivated eels in China. The aim of this study was to reveal the cause of E. anguillarum pathogenic to European eel (Anguilla anguilla) from the perspective of the transcriptome. In this study, we first prepared E. anguillarum cultured in vitro and analysed the whole transcriptome after extracting the total RNA. Then, eels were i.p injected with E. anguillarum, and total RNA were extracted from the liver of European eels 48 h after the infection. After sequencing the transcriptome, we obtained average 1.97 × 108 clean reads cultured in vitro and 1.36 × 105 clean reads located in vivo after annotating all reads into the genome of E. anguillarum. The whole transcriptome showed, compared to the E. anguillarum cultured in vitro, 503 significantly up and 657 significantly down-regulated different expressed genes (DEGs) were observed. KEGG analysis showed that 38 DEGs of Two-Component System, 41 DEGs of ABC transporter, and 10 DEGs flagellar assembly pathways were highly upregulated in E.