-
Bonner posted an update 9 months ago
Skin is the largest external organ of the human body. It acts as a barrier to protect the human body from environmental pollution, mechanical stress, and excessive water loss. The defensive function resides primarily on top of the epidermis layer commonly known as stratum corneum (SC). Human SC consists of three major lipids, namely ceramide, free fatty acid, and cholesterol that comprise approximately 50%, 25%, and 25% of the total lipid mass, respectively. The optimal composition of SC lipids is the vital epidermal barrier function of the skin. On the other hand, skin barrier serves to limit passive water loss from the body, reduces chemical absorption from the environment, and prevents microbial infection. In contrast, epidermal lipids are important to maintain the cell structure, growth and differentiation, cohesion and desquamation as well as formation of a permeability barrier. Multiple non-invasive in vivo approaches were implemented on a regular basis to monitor skin physiological and intercellular lipid properties. The measurement of different parameters such as transepidermal water loss (TEWL), hydration level, skin elasticity, collagen intensity, melanin content, sebum, pH, and tape stripping is essential to evaluate the epidermal barrier function. Novel non-invasive techniques such as tape stripping, ultrasound imaging, and laser confocal microscopy offer higher possibility of accurate and detailed characterisation of skin barrier. To date, these techniques have also been widely used to determine the effects of herbal plants in dermatology. Herbal plants have been traditionally used for ages to treat a variety of skin diseases, as reported by the World Health Organisation (WHO). Their availability, lower cost, and minimal or no side effects have created awareness among society, thus increase the demand for natural sources as the remedy to treat various skin diseases. This paper reviews several non-invasive techniques and evaluations of herbal-based product in dermatology.Objectives To develop a comprehensive yet simple dental follow up and maintenance protocol based on existing guidelines and recommendations. NS 105 solubility dmso Methods A multidisciplinary team reviewed available maintenance and follow up guidelines and recommendations then developed a single protocol for adult dental patients. Results The protocol includes ten questions that categorize dental patients into one of three risk categories. Based on the risk category, each patient is assigned a recall interval and recommendations for in office and at home dental care. Conclusions Development of a single multidisciplinary follow up and maintenance protocol.Stinging nettles provide low-cost quality nutrition for alleviating malnutrition. Previous research on stinging nettles focused mainly on the nutritional quality of fresh leaves. In this study, the effect of drying method on macronutrients, mineral content, ascorbic acid, β-carotene content and total phenols content and antioxidant activity were investigated. The contribution of fresh, oven dried or freeze dried stinging nettle leaves to the required daily value for the nutrients were also determined. Oven drying of nettle leaves resulted in a higher loss of β-carotene and ascorbic acid content compared to freeze drying. In contrast, the total phenols content and total antioxidant activity were higher in oven dried stinging nettle leaves compared to freeze dried leaves. Overall, freeze dried and oven dried nettle leaves can be considered as a rich source of Ca, Mg and vitamin A; a good source of vitamin C, Fe, and Mn; and a source for Mg and K. Stinging nettle leaves could potentially be used as a cheap natural source of antioxidants and for addressing micronutrient malnutrition.APOE4 is a major genetic risk factor for Alzheimer’s disease and high amyloid-β (Aβ) levels in the brain are a pathological hallmark of the disease. However, the contribution of specific APOE-modulated Aβ-dependent and Aβ-independent functions to cognitive decline remain unclear. Increasing evidence supports a role of APOE in modulating cerebrovascular function, however whether ameliorating this dysfunction can improve behavioral function is still under debate. We have previously demonstrated that systemic epidermal growth factor (EGF) treatment, which is important for vascular function, at early stages of pathology (treatment from 6 to 8 months) is beneficial for recognition and spatial memory and cerebrovascular function in female mice that express APOE4. These data raise the important question of whether EGF can improve APOE4-associated cerebrovascular and behavioral dysfunction when treatment is initiated at an age of advanced pathology. Positive findings would support the development of therapies that target cerebrovascular dysfunction associated with APOE4 in aging and AD in individuals with advanced cognitive impairment. Therefore, in this study female mice that express APOE4 in the absence (E4FAD- mice) or presence (E4FAD+ mice) of Aβ overproduction were treated from 8 to 10 months of age systemically with EGF. EGF treatment mitigated behavioral dysfunction in recognition memory and spatial learning and improved hippocampal neuronal function in both E4FAD+ and E4FAD- mice, suggesting that EGF treatment improves Aβ-independent APOE4-associated deficits. The beneficial effects of EGF treatment on behavior occurred in tandem with improved markers of cerebrovascular function, including lower levels of fibrinogen, lower permeability when assessed by MRI and higher percent area coverage of laminin and CD31 in the hippocampus. These data suggest a mechanistic link among EGF signaling, cerebrovascular function and APOE4-associated behavioral deficits in mice with advanced AD-relevant pathology.The Large Eddy Simulation (LES) turbulence model was used to investigate the wind environment over the deck near bridge tower and was verified using the wind tunnel tests. Compared with the wind tunnel tests, the computational fluid dynamics (CFD) approach was more convenient for the investigations of the local wind field. It was found that the influence of bridge tower on the wind flow can increase rapidly the wind speed on vehicles while bearing off a narrow zone near the tower. The dangerous situation can be effectively compromised by installing a proper local windshield barrier (WSB) with varying heights and porosity ratios along the bridge span. The length of the influence region of tower on the wind environment over the bridge deck was about 7 times of the tower width, implying a proper length of local windshield barriers on each side of the tower. Parametric studies demonstrated that the length of local WSB with different porosity ratios could affect the slope of equivalent wind speeds, indicating that the shorter the length of local WSB was, the rapider the wind speed of the tower influence region varied.