Activity

  • Kaae posted an update 7 months, 2 weeks ago

    In addition, our DFM-RTFNet achieves competitive performance on the KITTI road benchmark.A transparent digital twin (DT) is designed for output control using the belief rule base (BRB), namely, DT-BRB. The goal of the transparent DT-BRB is not only to model the complex relationships between the system inputs and output but also to conduct output control by identifying and optimizing the key parameters in the model inputs. The proposed DT-BRB approach is composed of three major steps. First, BRB is adopted to model the relationships between the inputs and output of the physical system. Second, an analytical procedure is proposed to identify only the key parameters in the system inputs with the highest contribution to the output. Being consistent with the inferencing, integration, and unification procedures of BRB, there are also three parts in the contribution calculation in this step. Finally, the data-driven optimization is performed to control the system output. A practical case study on the Wuhan Metro System is conducted for reducing the building tilt rate (BTR) in tunnel construction. By comparing the results following different standards, the 80% contribution standard is proved to have the highest marginal contribution that identifies only 43.5% parameters as the key parameters but can reduce the BTR by 73.73%. Moreover, it is also observed that the proposed DT-BRB approach is so effective that iterative optimizations are not necessarily needed.This article deals with the problems of stability and control of the interconnected system (IS) with unknown time-varying delays via decentralized time-delay control using partial variables with measurable states. First, the model of the IS with time delays is established, and the relevant control scheme is proposed. The control scheme just needs to control all or partial state variables corresponding to the elements on the main diagonal of the gain matrices, which can reduce the control cost and improve the flexibility of control. In addition, there are no additional restrictions in the process of designing the controller. Second, relevant lemmas are derived. The exponential boundedness and stability analysis of the IS with time delays are presented, respectively, by stability theory, and related results are derived. Meanwhile, the stability domain of the IS is estimated. Besides, the obtained results can also be used for many practical systems, such as the interconnected power system, the multislave teleoperation systems, the brushless dc motor (BLDCM) system, and the chaotic system. Finally, the effectiveness and application of the obtained results are verified by several examples.Thanks to large-scale labeled training data, deep neural networks (DNNs) have obtained remarkable success in many vision and multimedia tasks. However, because of the presence of domain shift, the learned knowledge of the well-trained DNNs cannot be well generalized to new domains or datasets that have few labels. Unsupervised domain adaptation (UDA) studies the problem of transferring models trained on one labeled source domain to another unlabeled target domain. In this article, we focus on UDA in visual emotion analysis for both emotion distribution learning and dominant emotion classification. Specifically, we design a novel end-to-end cycle-consistent adversarial model, called CycleEmotionGAN++. First, we generate an adapted domain to align the source and target domains on the pixel level by improving CycleGAN with a multiscale structured cycle-consistency loss. During the image translation, we propose a dynamic emotional semantic consistency loss to preserve the emotion labels of the source images. Second, we train a transferable task classifier on the adapted domain with feature-level alignment between the adapted and target domains. We conduct extensive UDA experiments on the Flickr-LDL and Twitter-LDL datasets for distribution learning and ArtPhoto and Flickr and Instagram datasets for emotion classification. The results demonstrate the significant improvements yielded by the proposed CycleEmotionGAN++ compared to state-of-the-art UDA approaches.Most existing studies on computational modeling of neural plasticity have focused on synaptic plasticity. However, regulation of the internal weights in the reservoir based on synaptic plasticity often results in unstable learning dynamics. In this article, a structural synaptic plasticity learning rule is proposed to train the weights and add or remove neurons within the reservoir, which is shown to be able to alleviate the instability of the synaptic plasticity, and to contribute to increase the memory capacity of the network as well. Our experimental results also reveal that a few stronger connections may last for a longer period of time in a constantly changing network structure, and are relatively resistant to decay or disruptions in the learning process. SKF38393 datasheet These results are consistent with the evidence observed in biological systems. Finally, we show that an echo state network (ESN) using the proposed structural plasticity rule outperforms an ESN using synaptic plasticity and three state-of-the-art ESNs on four benchmark tasks.Potholes are one of the most common forms of road damage, which can severely affect driving comfort, road safety, and vehicle condition. Pothole detection is typically performed by either structural engineers or certified inspectors. However, this task is not only hazardous for the personnel but also extremely time consuming. This article presents an efficient pothole detection algorithm based on road disparity map estimation and segmentation. We first incorporate the stereo rig roll angle into shifting distance calculation to generalize perspective transformation. The road disparities are then efficiently estimated using semiglobal matching. A disparity map transformation algorithm is then performed to better distinguish the damaged road areas. Subsequently, we utilize simple linear iterative clustering to group the transformed disparities into a collection of superpixels. The potholes are finally detected by finding the superpixels, whose intensities are lower than an adaptively determined threshold. The proposed algorithm is implemented on an NVIDIA RTX 2080 Ti GPU in CUDA.

Skip to toolbar