Activity

  • Goodwin posted an update 9 months ago

    Our evaluation has shown that the prohibition effect of straw burning significantly improved air quality in 2018, with a reduction of 59% ± 88% in the PM2.5 concentrations in October and November compared to 2015-2017. However, From October to April of the following year, the improvement effect was not significant due to postponement of straw burning to February or March. Our analysis also highlighted the roles of meteorological conditions, Therefore, combined with the promotion of straw utilization, scientifically prescribed burning considering the burning amount and location, meteorological conditions and regional transportation should be implemented.The catalytic ozonation treatment of secondary biochemical effluent for papermaking wastewater by Ag-doped nickel ferrite was investigated. find more Ag-doped catalysts prepared by sol-gel method were characterized, illustrating that Ag entirely entered the crystalline of NiFe2O4 and changed the surface properties. The addition of catalyst enhanced the removal efficiency of chemical oxygen demand and total organic carbon. The results of gas chromatography-mass spectrometer, ultraviolet light absorbance at 254 nm and three-dimensional fluorescence excitation-emission matrix suggested that aromatic compounds were efficiently degraded and toxic substances, such as dibutyl phthalate. In addition, the radical scavenging experiments confirmed the hydroxyl radicals acted as the main reactive oxygen species and the surface properties of catalysts played an important role in the reaction. Overall, this work validated potential applications of Ag-doped NiFe2O4 catalyzed ozonation process of biologically recalcitrant wastewater.Molecular level characterization of dissolved organic sulfur (DOS) by electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) is necessary for further understanding of the role of DOS in the environment. Here, ESI spray solvent, a key parameter for ion production during ESI process, was investigated for its effect on the molecular characterization of DOS by ESI-FTICR MS. 100% MeOH as spray solvent was found for the first time to remarkably enhance the ionization efficiency of the majority of CHOS-molecules in NOM, which facilitated a total of 1473 CHOS-molecular formulas with one sulfur atom to be detected. The number of CHOS-molecular formulas obtained using 100%MeOH as spray solvent increased notably over 740 in comparison with those using 50% MeOH aqueous solution (731) or 50% ACN aqueous solution (653). Moreover, due to the enhancement of ionization efficiency of DOS during ESI processes, the tandem mass spectra of the NOM CHOS-molecules could be easily obtained using 100% MeOH as spray solvent, which were hardly obtained using 50% MeOH aqueous solution as spray solvent. The results of the tandem mass spectra suggested the first discovery of organosulfates or sulfonic acids in Suwannee River NOM sample. A simple method based on 100% MeOH as ESI spray solvent for advanced molecular characterization of DOS by ESI-FTICR MS was proposed and applied, and the results revealed more molecular information of DOS in sea DOM samples.Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants and is extensively used in electronic equipment, furniture, plastics, and textiles. It is frequently detected in water, soil, air, and organisms, including humans, and has raised concerns in the scientific community regarding its potential adverse health effects. Human exposure to TBBPA is mainly via diet, respiration, and skin contact. Various in vivo and in vitro studies based on animal and cell models have demonstrated that TBBPA can induce multifaceted effects in cells and animals, and potentially exert hepatic, renal, neural, cardiac, and reproductive toxicities. Nevertheless, other reports have claimed that TBBPA might be a safe chemical. In this review, we re-evaluated most of the published TBBPA toxicological assessments with the goal of reaching a conclusion about its potential toxicity. We concluded that, although low TBBPA exposure levels and rapid metabolism in humans may signify that TBBPA is a safe chemical for the general population, particular attention should be paid to the potential effects of TBBPA on early developmental stages.Estuarine wetland is the transitional interface linking terrestrial with marine ecosystems, and wetland microbes are crucial to the biogeochemical cycles of nutrients. The soil samples were collected in four seasons (spring, S1; summer, S2; autumn, S3; and winter, S4) from Suaeda wetland of Shuangtaizi River estuary, Northeast China, and the variations of bacterial community were evaluated by high-throughput sequencing. Soil properties presented a significant seasonal change, including pH, carbon (C) and total nitrogen (TN), and the microbial diversity, richness and structure also differed with seasons. Canonical correspondence analysis (CCA) and Mantel tests implied that soil pH, C and TN were the key factors structuring the microbial community. Gillisia (belonging to Bacteroidetes) and Woeseia (affiliating with Gammaproteobacteria) were the two primary components in the rhizosphere soils, displaying opposite variations with seasons. Based on PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) prediction, the xenobiotics biodegradation related genes exhibited a seasonal decline, while the majority of biomarker genes involved in nitrogen cycle showed an ascending trend. These findings could advance the understanding of rhizosphere microbiota of Suaeda in estuarine wetland.Few studies have been carried out to connect nutrient recovery as struvite from wastewater and sustainable utilization of the recovered struvite for copper and zinc immobilization in contaminated soil. This study revealed the effect of struvite on Cu and Zn immobilization in contaminated bio-retention soil in the presence of commonly exuded plant organic acids. The research hypothesis was that the presence of both struvite and organic acids may influence the immobilization of Cu and Zn in soil. The outcome of this research confirmed that more than 99% of Cu and Zn was immobilized in bio-retention filter media by struvite application. Water-soluble Cu and Zn concentrations of struvite treated soil were less than 1.83 and 0.86 mg/kg respectively, and these concentrations were significantly lower compared to the total Cu and Zn content of 747.05 mg/kg in the contaminated soil. Application of struvite to Cu- and Zn-contaminated soil resulted in formation of compounds similar to zinc phosphate tetrahydrate (Zn3(PO4)2•4H2O) and amorphous Cu and Zn phases.

Skip to toolbar