Activity

  • Castro posted an update 9 months ago

    The depletion attraction robustly dominates over the quadrupolar elastic attraction if disks come close. Self-assembly of many disks proceeds via intermediate chaining, which demonstrates that in lyotropic liquid crystal colloids depletion interactions play an important role in structure formation processes.Venous thromboembolism (VTE) is an important postoperative complication. We investigated and analyzed the current inguinal hernia treatment methods and occurrence of early postoperative VTE in Chinese adults. This study involved data for patients with inguinal hernia hospitalized in 58 general hospitals in mainland China from January 1st, 2017 to December 31st, 2017. Data were retrospectively analyzed using a questionnaire. After data inputting and cleaning, we stratified and statistically analyzed patients’ data using Caprini scores to create a high-, middle-, and low-risk group. A total of 14,322 patients with inguinal hernia were admitted to the 58 participating hospitals. After data collation and cleaning, 13,886 patients (97.0%) met our inclusion and exclusion criteria. The percentages of laparoscopic surgery and open surgery were 51.2% and 48.8%, respectively. 16 VTEs occurred during the hospitalization, accounting for 0.1% of all adverse events (95% confidence interval (CI) 0.11-0.13). The incidence of VTE was 0.2% (95% CI 0.18-0.2) in the high-risk group and 0.02% (95% CI 0.01-0.03) in the middle-risk group, based on Caprini scoring, with a significant difference (p  less then  0.0001). read more No VTE occurred in the low-risk group. Only 3,250 (23.4%) patients underwent Caprini risk assessment regarding treatment, with 13.2% receiving any prevention and only 1.2% receiving appropriate prevention. The treatment of inguinal hernia in Chinese adults has progressed somewhat; however, the evaluation and prevention of perioperative VTE was seriously neglected, in our study, and the incidence of postoperative VTE was underestimated postoperatively. Risk factors continue to be inadequately considered.The loglinear pattern of respiratory scaling has been studied for over a century, while an increasing number of non-loglinear patterns have been found in the plant kingdom. Several previous studies had attempted to reconcile conflicting patterns from the aspects of statistical approaches and developmental stages of the organisms. However, the underlying enzymatic mechanism was largely ignored. Here, we propose an enzyme-driven law of photosynthetic scaling and test it in typical crop seedlings under different water conditions. The results showed that the key enzyme activity, the relative photosynthetic assimilation and the relative growth rate were all constrained by the available water, and the relationship between these biological traits and the available water supported our predictions. The enzyme-driven law appears to be more suitable to explain the curvature of photosynthetic scaling than the well-established power law, since it provides insight into the biochemical origin of photosynthetic assimilation.Reference genes (RGs) must have a stable expression in tissues in all experimental conditions to normalize real-time quantitative reverse transcription PCR (qRT-PCR) data. F0104 is a highly studied lineage of zebrafish developed to overexpress the growth hormone (GH). It is assumed that the transgenic process may influence the expression levels of commonly used RGs. The objective of the present study was to make a comprehensive analysis of stability of canditade RGs actb1, actb2, b2m, eif2s2, eef1a1, gapdh, rplp2, rpl7, rpl13α, tuba1, and rps18, in gh-transgenic and non-transgenic zebrafish. Liver, brain, intestine and muscle samples from both groups had qRT-PCR results analyzed by dCt, geNorm, NormFinder, BestKeeper, and RefFinder softwares. Consensus analyses among software concluded that rpl13α, rpl7, and eef1a1 are the most stable genes for zebrafish, considering the studied groups and tissues. Gapdh, rps18, and tuba1 suffered variations in stability among different tissues of both groups, and so, they were listed as the genes with lowest stability. Results from an average pairwise variations test indicated that the use of two RGs would generate reliable results for gene expression analysis in the studied tissues. We conclude that genes that are commonly used in mammals for qRT-PCR assays have low stability in both non-transgenic and gh-transgenic zebrafish reinforcing the importance of using species-specific RGs.The North Atlantic Oscillation (NAO) is a prominent mode of atmospheric variability that influences weather and climate, including the occurrence of extreme events, over a large part of Europe and Northeastern America. The NAO has been considered to be maintained primarily by migratory weather disturbances and to have a deep structure with no vertical tilt. A careful inspection nonetheless reveals that the associated anomalies do exhibit a subtle vertical tilt, but its dynamical implications are still unknown. Here we show that this vertical tilt is of vital dynamical significance for the wintertime NAO. We find, using atmospheric reanalysis data, that the tilted anomalies transport heat across the pronounced thermal gradient associated with a background westerly jetstream, advecting air from the cooler North America and Greenland to the warmer Atlantic, thereby acting to reinforce NAO’s thermal anomalies. The resultant conversion of potential energy from the background state is a larger energy source for maintaining the NAO than the feedback from migratory disturbances. Our findings thus uncover a fundamental mechanism of the NAO dynamics, with implications for the improvement of seasonal predictions for the Euro-Atlantic climate and the representation of the NAO variability in climate models.Our understanding of polyploid genome evolution is constrained because we cannot know the exact founders of a particular polyploid. To differentiate between founder effects and post polyploidization evolution, we use a pan-genomic approach to study the allotetraploid Brachypodium hybridum and its diploid progenitors. Comparative analysis suggests that most B. hybridum whole gene presence/absence variation is part of the standing variation in its diploid progenitors. Analysis of nuclear single nucleotide variants, plastomes and k-mers associated with retrotransposons reveals two independent origins for B. hybridum, ~1.4 and ~0.14 million years ago. Examination of gene expression in the younger B. hybridum lineage reveals no bias in overall subgenome expression. Our results are consistent with a gradual accumulation of genomic changes after polyploidization and a lack of subgenome expression dominance. Significantly, if we did not use a pan-genomic approach, we would grossly overestimate the number of genomic changes attributable to post polyploidization evolution.

Skip to toolbar