-
Almeida posted an update 10 months, 2 weeks ago
Perovskite solar cells (PSCs) have emerged as a promising candidate for next-generation thin-film photovoltaic technology owing to their excellent optoelectronic properties and cost-effectiveness. To gain the full potential of device performance, an in-depth understanding of the surface/interface science is an urgent need. Here, we present a review of molecularly engineered studies on interface modifications of PSCs. We elaborate a systematic classification of the existing optimization techniques employed in molecularly engineered perovskite and interface materials and analyze the insights underlying the reliability issues and functional behaviors. The achievements allow us to highlight the crucial strengths of molecular design for further tailoring of the interfacial properties, mitigating the nonradiative losses, optimizing the device performance, and retarding the degradation process of PSCs. Finally, the remaining challenges and potential development directions of molecularly engineered interfaces for high-performance and stable PSCs are also proposed.Cryptococcosis is an invasive infection that accounts for 15% of AIDS-related fatalities. Still, treating cryptococcosis remains a significant challenge due to the poor availability of effective antifungal therapies and emergence of drug resistance. Interestingly, protease inhibitor components of antiretroviral therapy regimens have shown some clinical benefits in these opportunistic infections. We investigated Major aspartyl peptidase 1 (May1), a secreted Cryptococcus neoformans protease, as a possible target for the development of drugs that act against both fungal and retroviral aspartyl proteases. Here, we describe the biochemical characterization of May1, present its high-resolution X-ray structure, and provide its substrate specificity analysis. Through combinatorial screening of 11,520 compounds, we identified a potent inhibitor of May1 and HIV protease. This dual-specificity inhibitor exhibits antifungal activity in yeast culture, low cytotoxicity, and low off-target activity against host proteases and could thus serve as a lead compound for further development of May1 and HIV protease inhibitors.Achieving a high-energy charge-transfer state (ECT) and concurrently reduced energy loss is of vital importance in boosting the open-circuit voltage (Voc) of organic solar cells (OSCs), but it is difficult to realize. We report herein a novel design tactic to achieve this goal by incorporating a three-dimensional (3D) shape-persistent norbornenyl group into the terminals of acceptor-donor-acceptor-type nonfullerene acceptors (NFAs). Compared with ITIC-based OSCs, norbornenyl-fused 1,1-dicyanomethylene-3-indanone (CBIC) terminals endow IDTT-CBIC-based OSCs with simultaneously higher ECT and lower radiative and non-radiative voltage loss, hence enhancing Voc by 90 mV. CBIC also improves the miscibility and modulates the molecular packing structures for efficient charge carrier transport and a better short-circuit current density in IDTT-CBIC-based OSCs. Consequently, the power conversion efficiency is improved by 22%, compared to that of the OSC based on ITIC. Furthermore, the effectiveness of the use of CBIC as the terminals is observed using different electron-donating cores. The utilization of the 3D shape-persistent building blocks represents a breakthrough in the design strategies for terminal groups toward efficient NFA-based OSCs with high Voc.A stimuli-responsive, sub-100 nm nanoparticle (NP) platform with a hydrolyzable ester side chain for in situ generation of surfactants is demonstrated. The NPs were synthesized via copolymerization of vinyl-laurate and vinyl-acetate [p-(VL-co-VA), 31 molar ratio] and stabilized with a protective poly(ethylene-glycol) shell. The NPs are ∼55 nm in diameter with a zeta potential of -54 mV. Hydrolysis kinetics in an accelerated, base-catalyzed reaction show release of about 11 and 30% of the available surfactant at 25 and 80 °C, respectively. The corresponding values in seawater are 22 and 76%. The efficiency of the released surfactant in reducing the interfacial tension, altering wettability, and stabilizing oil-water emulsion was investigated through contact angle measurements and laser confocal scanning microscopy and benchmarked to sodium laurate, a commercially available surfactant. All these measurements demonstrate both the efficacy of the NP system for surfactant delivery and the ability of the released surfactant to alter wettability and stabilize an oil-water emulsion.Ion mobility coupled to mass spectrometry (IM-MS) is widely used to study protein dynamics and structure in the gas phase. Increasing the energy with which the protein ions are introduced to the IM cell can induce them to unfold, providing information on the comparative energetics of unfolding between different proteoforms. Recently, a high-resolution cyclic IM-mass spectrometer (cIM-MS) was introduced, allowing multiple, consecutive tandem IM experiments (IMn) to be carried out. We describe a tandem IM technique for defining detailed protein unfolding pathways and the dynamics of disordered proteins. The method involves multiple rounds of IM separation and collision activation (CA) IM-CA-IM and CA-IM-CA-IM. Here, we explore its application to studies of a model protein, cytochrome C, and dimeric human islet amyloid polypeptide (hIAPP), a cytotoxic and amyloidogenic peptide involved in type II diabetes. In agreement with prior work using single stage IM-MS, several unfolding events are observed for cytochrome C. IMn-MS experiments also show evidence of interconversion between compact and extended structures. selleck IMn-MS data for hIAPP shows interconversion prior to dissociation, suggesting that the certain conformations have low energy barriers between them and transition between compact and extended forms.Monotargeting anticancer agents suffer from resistance and target nonspecificity concerns, which can be tackled with a multitargeting approach. The combined treatment with HDAC inhibitors and PPARγ agonists has displayed potential antitumor effects. Based on these observations, this work involves design and synthesis of molecules that can simultaneously target PPARγ and HDAC. Several out of 25 compounds inhibited HDAC4, and six compounds acted as dual-targeting agents. Compound 7i was the most potent, with activity toward PPARγ EC50 = 0.245 μM and HDAC4 IC50 = 1.1 μM. Additionally, compounds 7c and 7i were cytotoxic to CCRF-CEM cells (CC50 = 2.8 and 9.6 μM, respectively), induced apoptosis, and caused DNA fragmentation. Furthermore, compound 7c modulated the expression of c-Myc, cleaved caspase-3, and caused in vivo tumor regression in CCRF-CEM tumor xenografts. Thus, this study provides a basis for the rational design of dual/multitargeting agents that could be developed further as anticancer therapeutics.