- 
	
	
Lindegaard posted an update 9 months ago
SC HSP values can be further used in transdermal drug delivery, cosmetic formulations, safety issues, etc.This study evaluated the effectiveness of early pre-emptive conversion from cyclosporine to tacrolimus in kidney transplant patients with normal graft function and in the absence of adverse effects of the initial cyclosporine. A historical cohort study of 166 patients who received deceased-donor kidney transplant between 2011 to 2017 was conducted. All the patients had been treated with cyclosporine (Sandimmune®) during their immediate post-transplantation period. At the time of hospital discharge, the patients were divided into 2 groups patients with continued cyclosporine (Sandimmune®) treatment (n = 125) and the patients whose treatments converted from cyclosporine to tacrolimus (Prograf®) at discharge (n = 41). The 1-year graft function (p = 0.074), acute rejection (p = 0.566), and graft loss (p = 0.566) were not significantly different between two groups. The patients on tacrolimus had lower levels of cholesterol (p = 0.002) and diastolic blood pressure (p = 0.015). The long-term follow-up showed no significant difference in graft loss (p = 0.566). The patients received tacrolimus had higher all-cause mortality within the first year posttransplantation (p = 0.002) as well as long-term follow-up (p = 0.001). The continuation of initial cyclosporine might be a good option when the graft function is acceptable and the adverse effects are absent.A new sensit4e and select4e modified screen printed electrodes (MSPEs) and carbon paste electrodes (MCPEs) were studied in order to determine trimbutine maleate (TM) in pure, tablets, urine, and serum samples. Selleckchem PF-04620110 These sensors were embodied with multiwalled carbon nanotubes (MWCNTs) since it improved the quality of the sensors in presence of potassium tetrakis (p-chlorophenyl) borate (KTpClPB) ionophore. A good Nernstian response for the constructed sensors, at optimum paste composition, was exhibited for determination of TM in concentration range of 1.5 × 10-7 – 1.0 × 10-2 and 1.0 × 10-7- 1.0 × 10-2 mol L-1 at 25 °C with detection limit of 1.5 × 10-7 and 1.0 × 10-7 mol L-1 for MCPE and MSPE, respect4ely. It seemed that the potential of the electrodes was independent on pH in the range of 2.0-8.0, 2.0-8.5, 2.0-8.5, and 2.0-9.0 g4ing slope as 56.77 ± 1.11, 57.82 ± 0.54, 57.95 ± 0.37, and 58.99 ± 0.28 mV decade-1 for electrodes 1, 2, 3 and 4, respect4ely. MCPEs and MSPEs gave response time about 8 and 6 s with long lifetime (more than 3 and 5 months), respect4ely. A high select4ity of sensors was observed for TM regarding to a large number of interfering species. The constructed sensors were successfully applied for determination of TM in pure form, its pharmaceutical preparations and biological fluids using standard addition, calibration, and potentiometric titration methods with high precision and accuracy. The results showed a good agreement between the proposed method and the HPLC official method.There is a strong need to develop MRI contrast agents (CAs) with lower in-vivo retention, stronger signal enhancement, and more specific imaging. Here, we report a novel dextran (DEX)-based nanomicelle system as an MRI CA with superior tumor imaging and relatively short intravascular persistence. Gadolinium (Gd)-chelate (DTPA-Gd) was conjugated directly to DEX hydroxyl via a degradable ester bond. DEX-DTPA-Gd was then modified with dodecylsuccinic anhydride to obtain the amphiphilic derivative, 2-dodecylsuccinic acid (DSA)-grafted DEX-DTPA-Gd. Nanomicelles were prepared by dissolving DSA-DEX-DTPA-Gd in water using ultrasonication. The physicochemical properties, cytotoxicity, and MRI efficiency of the synthesized CA were evaluated. The synthesized DSA-DEX-DTPA-Gd self-assembled into nanomicelles with an average diameter of 67.80 ± 5.21 nm. Within the given Gd concentration range, DSA-DEX-DTPA-Gd and Magnevist® exhibited similar cytotoxicity. DEX-based CAs resulted in a greater contrast enhancement of T1-weighted signal intensity in the tumor region than Magnevist®, and the tumors were clearly defined for at least 3 h. Simultaneously, the ester bond in DSA-DEX-DTPA-Gd facilitated the elimination of Gd chelates, compared with the relatively more stable amide linker. The DEX-based nanomicelle system with directly ester-bound DTPA-Gd may serve as an MRI CA with superior tumor imaging and relatively rapid elimination.Cisplatin is a common agent which is used to treat Epithelial Ovarian Cancer (EOC), but cisplatin resistance is a major obstacle in successful treatment of ovarian cancer. Aberration in epigenetic changes play an important role in disregulation of gene expression. MiR-152 and miR-148a are frequently down-regulated in EOC due to promoter hyper-methylation. DNA methyltransferase1 (DNMT1), the main enzyme in maintenance of the pattern of DNA methylation, is one of the targets of miR-152 and miR-148a. Aberrantly up-regulation of DNMT1 is responsible for silencing of tumor suppressor genes in carcinogenesis. We hypothesized that re-expression of miR-152 and miR-148a and consequently down-regulation of DNMT1 may resensitize cancerous cells to chemotherapeutics agents. The aim of the present study is to investigate the effect of 5-azacytidine (5-Aza) and Trichostatin A on miR-152 and miR-148a expression in A2780CP ovarian cancer cell line. Optimal doses of 5-Azacitidine and TSA were measured by 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A2780CP cell line was treated by each drugs, alone or in combination and the expression of miR-148a, miR-152 and DNMT1 was evaluated by Real-Time Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-qPCR). The results revealed that TSA and 5-Azacytidine are able to revive the expression of miR-148a and miR-152 genes and mediate growth inhibition of epithelial ovarian cancer cells. The present study suggests that re-expression of miR-148a and miR-152 by epigenetic therapy aiming to DNMT1 suppression might resensitize resistant ovarian tumors to conventional chemotherapy.One of main herbal compounds with neuroprotective effects is curcumin. Lead poisoning cause neurodegeneration effect but its clear mechanism remains unknown. The current study evaluates the role of Akt/GSK3 signaling pathway in mediating the neuroprotective effects of curcumin against lead -induced neurodegeneration in rats. Sixty adult male rats were divided to Group 1 and 2 receiving normal saline and drinking water containing 0.075% of lead acetate. Groups 3, 4, 5, and 6 were treated concurrently with lead acetate (0.075% in drinking water) and Curcumin (10, 20, 40, and 80 mg/kg I.P, respectively). Morris water maze (MWM) was used to evaluate cognitive activity, Hippocampal oxidative, anti-oxidant, as well as inflammatory and apoptotic factors and also Akt and GSK3 protein levels were studied. We found that lead poisoning disturbed the learning and memory and simultaneous treatment with Curcumin reduced the lead -induced cognition disturbances. In addition, lead acetate treatment increased lipid peroxidation and the levels of IL-1β, TNF-α , Bax, GSK3 (total and phosphorylated) while reducing reduced form of GSH, Bcl-2, and Akt3 (total and phosphorylated) levels in the hippocampus.