-
Pollard posted an update 10 months, 2 weeks ago
Glycosylation cannot be ignored in the search for immunogenic antigens.Dopamine is well known to regulate movement through the differential control of direct and indirect pathways in the striatum that express D1 and D2 receptors respectively. The spinal cord also expresses all dopamine receptors; however, how the specific receptors regulate spinal network output in mammals is poorly understood. We explore the receptor-specific mechanisms that underlie dopaminergic control of spinal network output of neonatal mice during changes in spinal network excitability. During spontaneous activity, which is a characteristic of developing spinal networks operating in a low excitability state, we found that dopamine is primarily inhibitory. We uncover an excitatory D1-mediated effect of dopamine on motoneurons and network output that also involves co-activation with D2 receptors. Critically, these excitatory actions require higher concentrations of dopamine; however, analysis of dopamine concentrations of neonates indicates that endogenous levels of spinal dopamine are low. Because endogenous levels of spinal dopamine are low, this excitatory dopaminergic pathway is likely physiologically-silent at this stage in development. In contrast, the inhibitory effect of dopamine, at low physiological concentrations is mediated by parallel activation of D2, D3, D4 and α2 receptors which is reproduced when endogenous dopamine levels are increased by blocking dopamine reuptake and metabolism. We provide evidence in support of dedicated spinal network components that are controlled by excitatory D1 and inhibitory D2 receptors that is reminiscent of the classic dopaminergic indirect and direct pathway within the striatum. These results indicate that network state is an important factor that dictates receptor-specific and therefore dose-dependent control of neuromodulators on spinal network output and advances our understanding of how neuromodulators regulate neural networks under dynamically changing excitability.Landscape-scale bark beetle outbreaks alter forest structure with direct and indirect effects on plants and animals in forest ecosystems. Using alpine spruce forest and a native bee community as a study system, we tested how tree mortality from bark beetles impacts bee foraging habitats and populations. Bees were collected across the growing season (early-, middle-, and late-season) for two years using passive trapping methods, and collections were used to analyze patterns in species abundances and diversity. Three important findings emerged (1) forest stands that were post-outbreak had 62% higher floral density and 68% more floral species during peak bloom, respectively, than non-affected stands; (2) bee captures were highest early-season (June) and were not strongly affected by bark beetle outbreak; however, mean number of bee species and Shannon-Weiner diversity were significantly higher in post-outbreak stands and this effect was pronounced early in the growing season. Corresponding analysis of β-diversity indicated higher accumulation of bee biodiversity in post-outbreak stands and a turnover in the ratio of Bombus Osmia; (3) bee captures were linked to variation in foraging habitat, but number of bee species and diversity were more strongly predicted by forest structure. Our results provide evidence of increased alpine bee biodiversity in post-outbreak stands and increased availability of floral resources. We conclude that large-scale disturbance from bark beetle outbreaks may drive shifts in pollinator community composition through cascading effects on floral resources, mediated via mortality of overstory trees.Uncertainties over future climatic conditions pose significant challenges when selecting appropriate conservation strategies for heritage sites. Choosing effective strategies is especially important for earthen heritage sites located in dryland regions, as many are experiencing rapid environmentally-driven deterioration. We use a newly developed cellular automaton model (ViSTA-HD), to evaluate the environmental deterioration risk, over a 100-year period, under a range of potential climate and conservation scenarios. Results show increased wind velocities could substantially increase the overall deterioration risk, implying the need for wind-reducing conservation strategies. In contrast, predicted increases in rainfall are not likely to increase the overall deterioration risk, despite greater risk of rain-driven deterioration features. Of the four conservation strategies tested in our model, deterioration risk under all climatic scenarios was best reduced by increasing the coverage of natural, randomly-distributed vegetation to 80%. We suggest this approach could be an appropriate long-term conservation strategy for other earthen sites in dryland regions.The way the visual system processes different scales of spatial information has been widely studied, highlighting the dominant role of global over local processing. Recent studies addressing how the auditory system deals with local-global temporal information suggest a comparable processing scheme, but little is known about how this organization is modulated by long-term musical training, in particular regarding musical sequences. learn more Here, we investigate how non-musicians and expert musicians detect local and global pitch changes in short hierarchical tone sequences structured across temporally-segregated triplets made of musical intervals (local scale) forming a melodic contour (global scale) varying either in one direction (monotonic) or both (non-monotonic). Our data reveal a clearly distinct organization between both groups. Non-musicians show global advantage (enhanced performance to detect global over local modifications) and global-to-local interference effects (interference of global over local processing) only for monotonic sequences, while musicians exhibit the reversed pattern for non-monotonic sequences. These results suggest that the local-global processing scheme depends on the complexity of the melodic contour, and that long-term musical training induces a prominent perceptual reorganization that reshapes its initial global dominance to favour local information processing. This latter result supports the theory of “analytic” processing acquisition in musicians.