- 
	
	
Hyldgaard posted an update 9 months ago
A better understanding of the molecular evolution of myofilament proteins in the context of physiological functions of invertebrate and vertebrate flight muscles can help explore novel approaches to enhance the performance and efficiency of skeletal and cardiac muscles for the improvement of human health.The global pandemic of COVID-19 disease caused by infection with the SARS-CoV-2 coronavirus, has produced an urgent requirement and search for improved treatments while effective vaccines are developed. A strategy for improved drug therapy is to increase levels of endogenous reactive metabolites for selective toxicity to SARS-CoV-2 by preferential damage to the viral proteome. Key reactive metabolites producing major quantitative damage to the proteome in physiological systems are reactive oxygen species (ROS) and the reactive glycating agent methylglyoxal (MG); cysteine residues and arginine residues are their most susceptible targets, respectively. From sequenced-based prediction of the SARS-CoV-2 proteome, we found 0.8-fold enrichment or depletion of cysteine residues in functional domains of the viral proteome; whereas there was a 4.6-fold enrichment of arginine residues, suggesting SARS-CoV-2 is resistant to oxidative agents and sensitive to MG. For arginine residues of the SARS-CoV-2 coronavirus predicted to be in functional domains, we examined which are activated toward modification by MG – residues with predicted or expected low pKa by neighboring group in interactions. We found 25 such arginine residues, including 2 in the spike protein and 10 in the nucleoprotein. These sites were partially conserved in related coronaviridae SARS-CoV and MERS. Finally, we identified drugs which increase cellular MG concentration to virucidal levels antitumor drugs with historical antiviral activity, doxorubicin and paclitaxel. Our findings provide evidence of potential vulnerability of SARS-CoV-2 to inactivation by MG and a scientific rationale for repurposing of doxorubicin and paclitaxel for treatment of COVID-19 disease, providing efficacy and adequate therapeutic index may be established.Inflammatory bowel disorders can be associated with alterations in gut microbiota (dysbiosis) and behavioral disturbances. Itacitinib In experimental colitis, administration of fish oil (FO) or cannabinoids, such as cannabidiol (CBD), reduce inflammation. We investigated the effect of combined FO/CBD administration on inflammation and dysbiosis in the dextran sulphate sodium (DSS) model of mouse colitis, which also causes behavioral disturbances. Colitis was induced in CD1 mice by 4% w/v DSS in drinking water for five consecutive days followed by normal drinking water. FO (20-75 mg/mouse) was administered once a day starting two days after DSS, whereas CBD (0.3-30 mg/kg), alone or after FO administration, was administered once a day starting 3 days after DSS, until day 8 (d8) or day 14 (d14). Inflammation was assessed at d8 and d14 (resolution phase; RP) by measuring the Disease Activity Index (DAI) score, change in body weight, colon weight/length ratio, myeloperoxidase activity and colonic interleukin (IL)-1β (IL-1β),ggested to afford anti-inflammatory action in colitis, was increased by DSS only at d14, but its levels were significantly elevated by all treatments at d8. FO and CBD co-administered at per se ineffective doses reduce colon inflammation, in a manner potentially strengthened by their independent elevation of Akkermansia muciniphila.
Umbilical cord blood transplantation (UCBT) is associated with a relatively high rate of engraftment failure. This study aimed at exploring whether any fecal microbiota could be associated with engraftment failure following UCBT in Crohn’s disease patients with
deficiency.
Thirteen patients were recruited and their 230 fecal samples were collected longitudinally from immediately before conditioning chemotherapy to 8 weeks post the UCBT. The V3-V4 regions of the bacterial 16S rRNA gene were amplified by PCR and sequenced, followed by bioinformatics analyses.
Following the UCBT, 7 out of 13 patients achieved neutrophil and platelet engraftment with a median of 21 and 28 days, respectively (S group), while 6 patients failed to achieve engraftment (F group). In comparison with that in the S group, significantly lower Shannon diversity values on the UCBT day (
= 0.0176) and less abundance of
,
,
, and one taxon of
family was detected in the F group, accompanied by significantly higher abundances of four taxa including
,
, and species
during the chemotherapy period as well as UCBT. The abundances of thirty OTUs were correlated significantly with clinical indices.
Microbial indicators of reduced diversity of microbiota and signatures of specific bacterial abundances, such as a lower abundance of
, for engraftment failure would require validation. These indicators may help for the risk stratification in patients with
deficiency undergoing UCBT.
Microbial indicators of reduced diversity of microbiota and signatures of specific bacterial abundances, such as a lower abundance of Bifidobacterium longum, for engraftment failure would require validation. These indicators may help for the risk stratification in patients with IL10RA deficiency undergoing UCBT.Gestational diabetes mellitus (GDM) causes oxidative stress in mothers and infants and causes vascular endothelial dysfunction, which is a key factor for maternal and fetal cardiovascular diseases in the later stage of GDM, seriously threatening the life and health of mothers and infants. Nowadays, metformin (MET) has been discovered to improve endothelial function, but studies regarding the mechanism of MET improving endothelial cell function and alleviating endothelial function under hyperglycemia are still extremely limited. We aimed to investigate whether MET exerts its protective role against hyperglycemia-induced endothelial dysfunction through p65 and Nrf2. In our studies, applying cell migration assay and tube formation assay, we observed an obvious improvement of endothelial function under MET-treated, as characterized by that MET accelerated GDM-attenuated migration and angiogenesis of HUVECs. And ELISA assay results uncovered that Nrf2 expression level was decreased in GDM placenta, HVUECs and maternal serum comparing with normal group, however activation Nrf2 largely ameliorated tube formation under hyperglycemic condition.