Activity

  • Brewer posted an update 9 months ago

    No significant pre- to post-exercise increase in neurotrophic factors (p > 0.05; BDNF; effect size = 0.46 and NGF; effect size = 0.48) was observed for either of the RT bouts. A similar increase in blood lactate concentration was observed pre- to post-exercise for both RT bouts (p less then 0.05). Cortisol increased similarly for both RT bouts, when compared to the resting day condition (p less then 0.05). In conclusion, the results suggest that, despite differences in RT schemes, a similar acute neurotrophic, metabolic and hormonal response was observed when the TLL is equated.This study aimed to analyze the influence of the inertial load on both concentric and eccentric power output production during the flywheel leg curl exercise, and to assess the reliability of power output variables. Sixteen participants (8 males, 8 females) attended 4 testing sessions. During testing, participants performed one set of eight repetitions using a specific inertial load (0.083, 0.132, 0.182, 0.266 and 0.350 kg·m2) with a flywheel leg curl exercise. Concentric (CON) power, eccentric (ECC) power and the ECC/CON ratio were analyzed. The reliability analysis between sessions was performed. A significant interaction of inertia load x gender was found in CON power (p less then 0.001) and in ECC power (p = 0.004), but not in the ECC/CON ratio (p = 0.731). A significant with-in (inertia loads) effect was found in CON power (p less then 0.001) and in ECC power (p less then 0.001), but not in the ECC/CON ratio (p = 0.096). CON power showed very high reliability scores, ECC power showed high to very high reliability scores, while the ECC/CON ratio ranged from poor to moderate. A significant between gender effect was found in CON power (p less then 0.001) and in ECC power (p less then 0.001), but not in the ECC/CON ratio (p = 0.752). This study is the first to report that power output in the flywheel leg curl exercise is altered by the inertia load used, as well as power output is different according to gender. CON and ECC power output presents high to very high reliability scores, and the ECC/CON ratio should not be used instead. These results can have important practical implications for testing and training prescription in sports.Redistributing long inter-set rest intervals into shorter but more frequent rest intervals generally maintains concentric performance, possibly due to improved energy store maintenance. However, eccentric actions require less energy than concentric actions, meaning that shorter but more frequent sets may not affect eccentric actions to the same degree as concentric actions. Considering the increased popularity of eccentric exercise, the current study evaluated the effects of redistributing long inter-set rest periods into shorter but more frequent rest periods during eccentric only knee extensions. Eleven resistance-trained men performed 40 isokinetic unilateral knee extensions at 60°·s-1 with 285 s of total rest using traditional sets (TS; 4 sets of 10 with 95 s inter-set rest) and rest-redistribution (RR; 20 sets of 2 with 15 s inter-set rest). Before and during exercise, muscle oxygenation was measured via near-infrared spectroscopy, and rating of perceived exertion (RPE) was recorded after every 10th repetition. There were no differences between protocols for peak torque (RR, 241.58±47.20 N; TS, 231.64±48.87 N; p=0.396) or total work (RR, 215.26±41.47 J; TS, 209.71±36.02 J; p=0.601), but moderate to large effect sizes existed in later repetitions (6,8,10) with greater peak torque during RR (d=0.66-1.19). For the entire session, RR had moderate effects on RPE (RR, 5.73±1.42; TS, 6.09±1.30; p=0.307; d=0.53) and large effects on oxygen saturation (RR, 5857.4±310.0; TS, 6495.8±273.8; p=0.002, d=2.13). Therefore, RR may maintain peak torque or total work during eccentric exercise, improve oxygen utilization at the muscle, and reduce the perceived effort.A great number of studies focusing on the effects of dry-land resistance training interventions on swimming performance remain inconclusive. It is suggested that transferability of dry-land strength gains to swimming performance appear when dry-land resistance training programs are swim-specific. The main aim of this study was to compare the effects of specific dry-land resistance training on an ergometer with traditional dry-land exercises, and to determine how much of the resistance training effects were transferred to specific swimming conditions. The study included a group of 26 youth competitive male swimmers (age 15.7 ± 0.5 years, height 174.6 ± 6.6 cm, weight 68.4 ± 8.2 kg, training experience 5.8±0.7 years) of regional level. They were randomly allocated to one of two groups experimental (E) and control (T). Both groups were involved in a 12-week dry-land resistance training concentrated on increasing muscular strength and power output of the upper limbs. Group E used a specialized ergometer (JBA – Zbigniew Staniak), while group T performed traditional resistance exercises. The program consisted of 10 sets of 30 s of exercise with 30 s rest intervals between each set. CCT128930 in vivo A two-way repeated measures ANOVA with Tukey HSD post hoc comparisons was used to determine if any significant differences existed between training groups across pretest and posttest conditions. The significance level was set at p ≤ 0.05. Dry-land resistance training modalities were the only differences in training between both groups. Our findings show that rates of transfer are much higher in group E than in group T, which resulted in a significant increase in swimming velocity (by 4.32%, p less then 0.001; ES=1.23, and 2.78%, p less then 0.003, ES=0.31, respectively).Previous investigations have established the ergogenic effect of caffeine on maximal muscle strength, power output and strength-endurance. However, these investigations used testing protocols that do not replicate the structure of a regular strength training session. Thus, the aim of this study was to investigate the effect of acute caffeine ingestion on muscle performance during a simulated velocity-based training workout. In a double-blind, randomized and counterbalanced experiment, 12 participants performed two experimental trials after ingesting 3 mg/kg/b.m. of caffeine or a placebo. The trials consisted of 4 sets of 8 repetitions of the bench press exercise at 70% of their one-repetition maximum performed at maximal velocity. Bar velocity was recorded with a rotatory encoder and force, power output and work were calculated. Regarding the whole workout, caffeine increased mean bar velocity (+7.8%; p=0.002), peak bar velocity (+8.7%; p=0.006), mean force (+1.5%; p=0.002), mean power output (+10.1%; p=0.003) and peak power output (+8.

Skip to toolbar