-
Bitsch posted an update 7 months, 1 week ago
Rapid, sensitive and specific detection and reporting of infectious pathogens is important for patient management and epidemic surveillance. We demonstrated a point-of-care system integrated with a smartphone for detecting live virus from nasal swab media, using a panel of equine respiratory infectious diseases as a model system for corresponding human diseases such as COVID-19. Specific nucleic acid sequences of five pathogens were amplified by loop-mediated isothermal amplification on a microfluidic chip and detected at the end of reactions by the smartphone. Pathogen-spiked horse nasal swab samples were correctly diagnosed using our system, with a limit of detection comparable to that of the traditional lab-based test, polymerase chain reaction, with results achieved in ∼30 minutes.A tuneable metal-free protocol for the selective preparation of α-substituted vinyl sulfone and (E)-vinyl sulfone derivatives has been described. In this process, stable paraformaldehyde was used as the carbon source. The base played an important role in the selectivity control of transformations. More than 50 products were synthesized with excellent chemoselectivity and broad functional group tolerance.With a high-temperature, high-pressure hydrothermal technique, a new barium lead borate, [Ba3Pb(H2O)][B11O19(OH)3] (1), has been synthesized and characterized by single-crystal X-ray diffraction, and infrared and solid-state NMR spectroscopy. The structure of 1 contains planar thick layers of borates with the Ba2+ cations at sites in the inter- and intralayer space. Each layer consists of three single sheets. The central sheet is very corrugated and is built up from the fundamental building block (FBB) 2Δ3□Δ2□-Δ2□. On both sides of the central sheet there are borate single chains formed of the very rare FBB 2Δ4□Δ2□-3□Δ via corner-sharing. This FBB was first observed in a high-pressure polymorph of CaB2O4. These chains are linked into a sheet by PbO5(H2O) polyhedra, which are further linked to the central sheet by sharing vertices between triangles and tetrahedra to form a thick layer. The IR spectrum shows the presence of hydroxyl groups of HBO4, water molecules, BO3 triangles, and BO4 tetrahedra. GDC-0449 order The presence of BO3 and BO4 polyhedra was also confirmed by 11B MAS NMR spectroscopy.The degree of digestion, modulated by rat small intestinal extract on different functional fibers was investigated. In general, inulin-type fructans and fructooligosaccharides were the most resistant to the enzymatic digestion. Results evidenced the high-resistance of fructosyl-fructose bonds. This fits well with the concept of prebiotic carbohydrates. However, the mixture of melibiose, manninotriose and verbascotetraose (α-GOS) from peas, with a considerably lower molecular weight (0.6 kDa) than the fructans studied, were highly digested (61.2%). Interestingly, the Gal-(1 → 6)-Gal bonds present into the manninotriose and verbascotetraose were more prone to be hydrolyzed than Gal-(1 → 6)-Glc (melibiose). However, when melibiose was the only disaccharide present in the reaction mixture, the hydrolysis was also high (67.7%). The use of small intestinal enzymatic preparations is a realistic approximation to evaluate the digestion of different carbohydrates, thus, showing that recognized non-digestible carbohydrates can also be partially digested.Albeit arsenic As(iii) is a well-known carcinogenic contaminant, the modalities by which it interacts with living organisms are still elusive. Details pertaining to the binding properties of As(iii) by common nucleotides such as AMP, ADP and ATP are indeed mostly unknown. Here we present an investigation, conducted via experimental and quantum-based computational approaches, on the stability of the complexes formed by arsenic with those nucleotides. By means of potentiometric and calorimetric measurements, the relative stability of AMP, ADP and ATP has been evaluated as a function of the pH. It turns out that ATP forms more stable structures with As(iii) than ADP which, in turn, better chelates arsenic than AMP. Such a stability sequestration capability of arsenic (ATP > ADP > AMP) has been interpreted on a twofold basis via state-of-the-art ab initio molecular dynamics (AIMD) and metadynamics (MetD) simulations performed on aqueous solutions of As(iii) chelated by AMP and ATP. In fact, we demonstrate that ATP offers a larger number of effective binding sites than AMP, thus indicating a higher statistical probability for chelating arsenic. Moreover, an evaluation of the free energy associated with the interactions that As(iii) establishes with the nucleotide atoms responsible for the binding quantitatively proves the greater effectiveness of ATP as a chelating agent.In this work, we demonstrated an ultrasensitive detection platform for polychlorinated biphenyls (PCBs) based on DNA microcapsules and a nonlinear hybridization chain reaction (NHCR). In the process, first, electrochemical signal molecules (Methylene Blue, MB) were sealed in the prepared DNA microcapsules. In the presence of PCB-72, DNA microcapsules could be dissociated with the conjugation of the aptamer and target, and meanwhile, the released DNA strand could initiate the NHCR and trigger the chain branching growth of DNA dendrimers. Because the released MBs were intercalated into the DNA dendrimer, enhanced electrochemical responses could be detected. This method exhibited ultrahigh sensitivity to PCB-72 with a detection limit of 0.001 ng mL-1. Furthermore, the present aptasensor was also capable of discriminating different PCB congeners. Therefore, the devised label-free and enzyme-free amplification electrochemical aptasensor strategy has great potential for the detection of PCB-72 in real samples, and this strategy may also become an attractive alternative for sensitive and selective small molecule, protein, nucleic acid and nuclease activity detection.Exosome-mediated nucleic acids delivery has been emerging as a promising strategy for gene therapy. However, the intrinsic off-target effects due to non-specific uptake of exosomes by other tissues remain the big hurdle for clinical application. In this study, we aimed to enhance the efficacy and minimize the off-target effects by simultaneously encapsulating engineered mRNA translationally activated by tissue-specific microRNA (miRNA) and increasing targeted delivery efficiency via ultrasound-targeted microbubble destruction (UTMD). Briefly, the upstream of interest transcript was engineered to harbor an internal ribosome entry site (IRES) modified with two miRNA recognition sites. In vitro reporter experiments revealed that the engineered mRNA could be encapsulated into exosomes and can be translationally activated by corresponding miRNAs in the recipient cells. By a proof-of-principle in vivo experiment, we encapsulated miR-148a (an adipose relatively specific miRNA)-responsive PGC1α mRNA into exosomes and delivered the exosomes into the adipose tissue with the aid of UTMD.