-
Ahmed posted an update 7 months, 1 week ago
Attention facilitates the gating of information from the sending brain area to the receiving areas, with this being achieved by dynamical changes in effective connectivity, which refers to the directional influences between cortical areas. To probe the effective connectivity and cortical excitability modulated by covertly shifted attention, transcranial magnetic stimulation (TMS) was used to directly perturb the right retinotopic visual cortex with respect to attended and unattended locations, and the impact of this was tracked from the stimulated area to other areas by concurrent use of electroencephalography (EEG). TMS to the contralateral visual hemisphere led to a stronger evoked potential than stimulation to the ipsilateral hemisphere. Moreover, stronger beta- and gamma-band effective connectivities assessed as time-delayed phase synchronizations between stimulated areas and other areas were observed when TMS was delivered to the contralateral hemisphere. These effects were more enhanced when they preceded more prominent alpha lateralization, which is known to be associated with attentional gating. Our results indicate that attention-regulated cortical feedforward effective connectivity can be probed by TMS-EEG with direct cortical stimulation, thereby bypassing thalamic gating. These results suggest that cortical gating of the feedforward input is achieved by regulating the effective connectivity in the phase dynamics between cortical areas.Diagnosing autism spectrum disorders (ASD) is a complicated, time-consuming process which is particularly challenging in older individuals. One of the most widely used behavioral diagnostic tools is the Autism Diagnostic Observation Schedule (ADOS). Previous work using machine learning techniques suggested that ASD detection in children can be achieved with substantially fewer items than the original ADOS. Here, we expand on this work with a specific focus on adolescents and adults as assessed with the ADOS Module 4. We used a machine learning algorithm (support vector machine) to examine whether ASD detection can be improved by identifying a subset of behavioral features from the ADOS Module 4 in a routine clinical sample of N = 673 high-functioning adolescents and adults with ASD (n = 385) and individuals with suspected ASD but other best-estimate or no psychiatric diagnoses (n = 288). We identified reduced subsets of 5 behavioral features for the whole sample as well as age subgroups (adolescents vs. adults) that showed good specificity and sensitivity and reached performance close to that of the existing ADOS algorithm and the full ADOS, with no significant differences in overall performance. These results may help to improve the complicated diagnostic process of ASD by encouraging future efforts to develop novel diagnostic instruments for ASD detection based on the identified constructs as well as aiding clinicians in the difficult question of differential diagnosis.Spontaneous wine fermentation is characterized by yeast population evolution, modulated by complex physical and metabolic interactions amongst various species. The contribution of any given species to the final wine character and aroma will depend on its numerical persistence during the fermentation process. Studies have primarily evaluated the effect of physical and chemical factors such as osmotic pressure, pH, temperature and nutrient availability on mono- or mixed-cultures comprising 2-3 species, but information about how interspecies ecological interactions in the wine fermentation ecosystem contribute to population dynamics remains scant. Therefore, in the current study, the effect of temperature and sulphur dioxide (SO2) on the dynamics of a multi-species yeast consortium was evaluated in three different matrices including synthetic grape juice, Chenin blanc and Grechetto bianco. The population dynamics were affected by temperature and SO2, reflecting differences in stress resistance and habitat preferences of the different species and influencing the production of most volatile aroma compounds. read more Evidently at 15 °C and in the absence of SO2 non-Saccharomyces species were dominant, whereas at 25 °C and when 30 mg/L SO2 was added S. cerevisiae dominated. Population growth followed similar patterns in the three matrices independently of the conditions. The data show that fermentation stresses lead to an individual response of each species, but that this response is strongly influenced by the interactions between species within the ecosystem. Thus, our data suggest that ecological interactions, and not only physico-chemical conditions, are a dominant factor in determining the contribution of individual species to the outcome of the fermentation.microRNAs are short, noncoding RNAs that can regulate hundreds of targets and thus shape the expression landscape of a cell. Similar to mRNA, they often exhibit cell type enriched expression and serve to reinforce cellular identity. In tissue with high cellular complexity, such as the central nervous system (CNS), it is difficult to attribute microRNA changes to a particular cell type. To facilitate interpretation of microRNA studies in these tissues, we used previously generated data to develop a publicly accessible and user-friendly database to enable exploration of cell type enriched microRNA expression. We provide illustrations of how this database can be utilized as a reference as well as for hypothesis generation. First, we suggest a putative role for miR-21 in the microglial spinal injury response. Second, we highlight data indicating that differential microRNA expression, specifically miR-326, may in part explain regional differences in inflammatory cells. Finally, we show that miR-383 expression is enriched in cortical glutamatergic neurons, suggesting a unique role in these cells. These examples illustrate the database’s utility in guiding research towards unstudied regulators in the CNS. This novel resource will aid future research into microRNA-based regulatory mechanisms responsible for cellular phenotypes within the CNS.Planned vaginal delivery in twin pregnancies has three potential outcomes vaginal or cesarean delivery of both twins, or cesarean for the second twin. Our objective was to assess the association between delivery mode and severe acute maternal morbidity (SAMM) in women with twin pregnancies and planned vaginal deliveries. We limited this planned secondary analysis of the JUMODA cohort, a national prospective population-based study of twin deliveries, to women with planned vaginal delivery at or after 24 weeks of gestation who gave birth to two live fetuses at hospital. The association between delivery mode and SAMM was estimated from multivariate Poisson regression models. Of 5,055 women with planned vaginal delivery, 4,007 (79.3%) delivered both twins vaginally, 134 (2.6%) had cesarean for the second twin and 914 (18.1%) cesarean for both twins. Compared to vaginal delivery of both twins, the risk of SAMM was significantly higher after cesarean for the second twin (9.0% versus 4.5%; aRR 2.22, 95% CI 1.27-3.88) and for both twins (9.