Activity

  • Myers posted an update 8 months, 4 weeks ago

    Associated trade-offs are also discussed. City-level and regional-level governments are particularly well placed to incorporate co-benefits into their decision making because it is at this scale that co-benefits most clearly manifest, and where interventions can have the most immediate effects.Malaria is a long-standing public health problem in sub-Saharan Africa, whereas arthropod-borne viruses (arboviruses) such as dengue and chikungunya cause an under-recognised burden of disease. Many human and environmental drivers affect the dynamics of vector-borne diseases. In this Personal View, we argue that the direct effects of warming temperatures are likely to promote greater environmental suitability for dengue and other arbovirus transmission by Aedes aegypti and reduce suitability for malaria transmission by Anopheles gambiae. Environmentally driven changes in disease dynamics will be complex and multifaceted, but given that current public efforts are targeted to malaria control, we highlight Ae aegypti and dengue, chikungunya, and other arboviruses as potential emerging public health threats in sub-Saharan Africa.

    Exposure to faecal contamination is believed to be associated with child diarrhoea and possibly stunting; however, few studies have explicitly measured the association between faecal contamination and health. We aimed to assess individual participant data (IPD) across multiple trials and observational studies to quantify the relationship for common faecal-oral transmission pathways.

    We did a systematic review and meta-analysis of IPD from studies identified in an electronic search of PubMed, Web of Science, and Embase on May 21, 2018. The search was done in English, but full texts published in French, Portuguese, and Spanish were also reviewed. Eligible studies quantified (1) household-level faecal indicator bacteria concentrations along common faecal-oral transmission pathways of drinking water, soil, or food, on children’s hands or fomites, or fly densities in food preparation areas; and (2) individual-level diarrhoea or linear growth measures for children younger than 5 years in low-income and middle-ie.

    This analysis proposes a novel method for quantifying national responsibility for damages related to climate change by looking at national contributions to cumulative CO

    emissions in excess of the planetary boundary of 350 ppm atmospheric CO

    concentration. This approach is rooted in the principle of equal per capita access to atmospheric commons.

    For this analysis, national fair shares of a safe global carbon budget consistent with the planetary boundary of 350 ppm were derived. These fair shares were then subtracted from countries’ actual historical emissions (territorial emissions from 1850 to 1969, and consumption-based emissions from 1970 to 2015) to determine the extent to which each country has overshot or undershot its fair share. Through this approach, each country’s share of responsibility for global emissions in excess of the planetary boundary was calculated.

    As of 2015, the USA was responsible for 40% of excess global CO

    emissions. The European Union (EU-28) was responsible for 29%. The G8 nations (the USA, EU-28, Russia, Japan, and Canada) were together responsible for 85%. Countries classified by the UN Framework Convention on Climate Change as Annex I nations (ie, most industrialised countries) were responsible for 90% of excess emissions. The Global North was responsible for 92%. By contrast, most countries in the Global South were within their boundary fair shares, including India and China (although China will overshoot soon).

    These figures indicate that high-income countries have a greater degree of responsibility for climate damages than previous methods have implied. These results offer a just framework for attributing national responsibility for excess emissions, and a guide for determining national liability for damages related to climate change, consistent with the principles of planetary boundaries and equal access to atmospheric commons.

    None.

    None.Acanthamoeba castellanii is a protist that has a high predation efficiency for bacteria in a number of monoxenic culture experiments. However, the role of A. castellanii in the microbial community is still unknown because of the lack of studies on multiple-species interactions. The aim of this study was to investigate the change of bacterial composition after A. castellanii emerges in a water environment. We added A. castellanii to an environmental water sample and incubated it for two days. Then, we performed 16S ribosomal RNA sequencing techniques to analyze the changes in bacterial composition. selleckchem In this study, A. castellanii slightly increased the relative abundance of a few opportunistic pathogens, such as Legionella, Roseomonas, and Haemophilus. This result may be related to the training ground hypothesis. On the other hand, the growth of some bacteria was inhibited, such as Cyanobacteria and Firmicutes. Although A. castellanii did not drastically change the whole bacterial community, we surprisingly found the dissolved oxygen concentration was increased after incubation with A. castellanii. We applied environmental water at the laboratory scale to investigate the interactions among A. castellanii, complex microbial communities and the environment. We identified the bacteria that are sensitive to A. castellanii and further found the novel relationship between dissolved oxygen and microbial interaction. Our results helped to clarify the role of A. castellanii in microbial communities.Tissues undergoing morphogenesis impose mechanical effects on one another. How developmental programs adapt to or take advantage of these effects remains poorly explored. Here, using a combination of live imaging, modeling, and microsurgical perturbations, we show that the axial and paraxial tissues in the forming avian embryonic body coordinate their rates of elongation through mechanical interactions. First, a cell motility gradient drives paraxial presomitic mesoderm (PSM) expansion, resulting in compression of the axial neural tube and notochord; second, elongation of axial tissues driven by PSM compression and polarized cell intercalation pushes the caudal progenitor domain posteriorly; finally, the axial push drives the lateral movement of midline PSM cells to maintain PSM growth and cell motility. These interactions form an engine-like positive feedback loop, which sustains a shared elongation rate for coupled tissues. Our results demonstrate a key role of inter-tissue forces in coordinating distinct body axis tissues during their co-elongation.

Skip to toolbar