-
Christian posted an update 7 months, 1 week ago
Given the lack of studies on transmission through use of public toilets, comprehensive risk assessment relies upon the compilation of evidence gathered from parallel studies, including work performed in hospitals and prior work on related viruses. This narrative review examines the evidence suggestive of transmission risk through use of public toilets and concludes that such a risk cannot be lightly disregarded. A range of mitigating actions are suggested for both users of public toilets and those that are responsible for their design, maintenance and management.Accumulation of potentially toxic elements in soil and tea leaves is a particular concern for tea consumers worldwide. However, the contents of potentially toxic elements and their potential health and ecological risks in Chinese tea gardens have rarely been investigated on the national scale. In this study, we collected 225 paired soil and tea plant samples from 45 tea gardens in 15 provinces of China to survey the current risk of potentially toxic element accumulation in Chinese tea gardens. The results suggest that the average contents of most trace metals in rhizosphere soils meet the risk control standard for agricultural land in China. However, the mean contents of As, Cr, Cd, Zn, Cu, and Ni in rhizosphere soils were 1.94, 2.14, 1.23, 1.15, 1.18, and 1.19 times their corresponding background soil values in China. Cd had the highest geo-accumulation index, followed by As, Zn, Cr, Ni, Cu, Pb, and Mn in rhizosphere soils. Nearly 2.22% and 4.44% of soils were moderately to heavily contaminated with As and Cd, respectively. The risk index ranged from 18.0 to 292, with an average value of 90.0, indicating low to moderate ecological risk in Chinese tea gardens. This is the first national-scale reconnaissance of trace metals in tea across China. Our findings provide a useful reference for ensuring the quality and safety of tea production and mitigating the risk of toxic element accumulation in tea.Di-(2-ethylhexyl) phthalate (DEHP) pollution has become a growing problem in farmlands of China. Drying-rewetting (DW) cycle is one of frequent environmental changes that agricultural production is confronted with, and also a convenient and practical agronomic regulation measure. In this study, in order to explore the effects of DW cycles on the dissipation of DEHP and their driving mechanisms in different types of soils, we performed a 45-day microcosm culture experiment with two typical agricultural soils, Lou soil (LS) and Red soil (RS). High-throughput sequencing was applied to study the response of soil microbial communities in the process of DEHP dissipation under DW cycles. The results showed that the DW cycles considerably inhibited the dissipation of DEHP in LS while promoted that in RS. The DW cycles obviously decreased the diversity, the relative abundance of significantly differential bacteria, and the total abundance of potential degrading bacterial groups in LS, whereas have little effect on bacterial community in RS, except at the initial cultivation stage when the corresponding parameters were promoted. AP1903 mouse The inhibition of the DW cycles on DEHP dissipation in LS was mainly derived from microbial degradation, but the interplay between microbial functions and soil attributes contributed to the promotion of DEHP dissipation in RS under the DW cycles. This comprehensive understanding of the contrasting impacts and underlying driving mechanisms may provide crucial implications for the prevention and control of DEHP pollution in regional soils.The use of willow plantations can be a sustainable approach for treating primary municipal wastewater, potentially reducing both the environmental and economic burdens associated with conventional treatment. However, the impact of wastewater irrigation upon the willow biorefinery potential has not yet been established. To investigate this effect, three-year-old field grown willows were harvested from plots kept as either controls or irrigated with primary municipal wastewater effluent at 29.5 million L ha-1 yr-1. Biomass compositional analysis, ionic liquid pretreatment and enzymatic saccharification were assessed and differential abundance of persistent extractable phytochemicals was evaluated using untargeted metabolite profiling. Glucan significantly increased by 8% in wastewater treated trees, arabinose and galactose were significantly decreased by 8 and 29%, respectively, while xylose, mannose and lignin content were unaltered. Ionic liquid pretreatment and enzymatic saccharification efficiencies did notrpin a novel high biomass phenotype in willow and, alongside lignocellulosic yields, could help enhance the economic feasibility of this clean wastewater treatment biotechnology through integration with sustainable biorefinery.Manures, storages for antibiotic resistance genes (ARGs), pollute soil and water as well as endanger human health. Recently, we have been searching a better solution to remove antibiotics and ARGs during aerobic composting. Here, the dynamics of chitosan addition on the profiles of 71 ARGs, bacterial communities, chlortetracycline (CTC), ofloxacin (OFX) were investigated in chicken manure composting and compared with zeolite addition. Chitosan addition effectively reduces antibiotics contents (CTC under detection limit, OFX 90.96%), amounts (18) and abundance (56.7%, 11.1% higher than zeolite addition) of ARGs and mobile genetic elements (MGEs) after 42 days composting. Network analysis indicated that a total of 27 genera strains assigned into 4 phyla (Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes) were the potential hosts of ARGs. Redundancy analysis (RDA) demonstrated that bacterial community succession is the main contributor in the variation of ARGs. Overall, chitosan addition may effect bacterial composition by influencing physic-chemical properties and the concentration of antibiotics, Cu2+, Zn2+ to reduce the risk of ARG transmission. This study gives a new strategy about antibiotics and ARGs removal from composting on the basis of previous studies.In this study, porous spherical carriers were fixed around the hollow fiber membrane module to mitigate membrane biofouling. Two MBRs (R1 without carriers, R2 with carriers) were operated for 31 days under identical operating conditions to investigate the effects of the carriers on the reactor performances, the production of extracellular polymeric substances (EPS), the level of N-acyl-homoserine lactones (AHLs), and the microbial communities. The results showed that the presence of carriers in MBR was conducive to nitrogen removal and decreased the total membrane filtration resistance by about 1.7 times. Slower transmembrane pressure (TMP) rise-up, thinner bio-cakes, lower EPS production, and fewer tryptophan and aromatic proteins substances on the membrane surface were observed in R2. The polysaccharides secretion of EPS in bio-cakes was mainly regulated by C4-HSL and 3OC6-HSL in the presence of carriers. The microbial community analysis revealed that carriers addition reduced the relative abundance of EPS and AHL producing bacteria in the membrane bio-cakes and enriched the accumulation of functional bacteria conducive to nutrient removal in the mixed liquor.