Activity

  • Tilley posted an update 7 months, 1 week ago

    The pyrovanadates β-Mn2V2O7 and β-Cu2V2O7 were previously investigated as photoanode materials for water splitting. Neither of them, however, was found to be sufficiently active. In this work, we predict the properties of these two structurally similar pyrovanadates upon Cu/Mn substitution in their corresponding lattices via density functional theory calculations to explore the suitability of their band structure for water splitting and to assess their ease of synthesis. We predict that a concentration of up to 20% Cu and Mn into β-Mn2V2O7 and β-Cu2V2O7, respectively, leads to a narrowing of the bandgap, which, in the former case, is experimentally confirmed by UV-vis spectroscopy. Calculations in the intermediate composition range, however, yield nearly constant bandgaps. Moreover, we predict the materials with higher substitution levels to be increasingly difficult to synthesize, implying that low substitution levels are most relevant in terms of bandgaps and ease of synthesis.Exciton-polaritons in organic materials are hybrid states that result from the strong interaction of photons and the bound excitons that these materials host. Organic polaritons hold great interest for optoelectronic applications; however, progress toward this end has been impeded by the lack of a first principles approach that quantifies light-matter interactions in these systems, which would allow the formulation of molecular design rules. Here, we present a theoretical framework that combines first principles calculations for excitons with classical electrodynamics in order to quantify light-matter interactions. We exemplify our approach by studying variants of the conjugated polymer polydiacetylene, and we show that a large polymer conjugation length is critical toward strong exciton-photon coupling, hence underlying the importance of pure structures without static disorder. By comparing to our experimental reflectivity measurements, we show that the coupling of excitons to vibrations, manifested by phonon side bands in the absorption, has a strong impact on the magnitude of light-matter coupling over a range of frequencies. Our approach opens the way toward a deeper understanding of polaritons in organic materials, and we highlight that a quantitatively accurate calculation of the exciton-photon interaction would require accounting for all sources of disorder self-consistently.Tuning of nonlinear optical responses is the essence to many photonics and optoelectronics applications. Due to the low-dimensionality and dispersion of massless Dirac Fermions, the nonlinear optical susceptibilities of graphene can be readily controlled via electrical gating. Based on the quantum interference between multi-photon transition pathways, the tuning mechanism of graphene nonlinearity is intrinsically different from most other systems. The phenomenon enables investigations into some nonlinear optical processes from fundamental regards. It also exhibits appealing features contrasting conventional materials, which can be desirable for novel device applications.We report a large set of state-to-state rate constants for the H + HD reactive collision, using Quasi-Classical Trajectory (QCT) simulations on the accurate H3 global potential energy surface of Mielke et al. [J. Chem. Phys. 116, 4142 (2002)]. High relative collision energies (up to ≈56 000 K) and high rovibrational levels of HD (up to ≈50 000 K), relevant to various non thermal equilibrium astrophysical media, are considered. We have validated the accuracy of our QCT calculations with a new efficient adaptation of the Multi Configuration Time Dependent Hartree (MCTDH) method to compute the reaction probability of a specific reactive channel. Our study has revealed that the high temperature regime favors the production of H2 in its highly rovibrationnally excited states, which can de-excite radiatively (cooling the gas) or collisionally (heating the gas). Those new state-to-state QCT reaction rate constants represent a significant improvement in our understanding of the possible mechanisms leading to the destruction of HD by its collision with a H atom.Efficient representations of the electron repulsion integral (ERI) tensor and fast algorithms for contractions with the ERI tensor often employ a low-rank approximation of the tensor or its sub-blocks. Such representations include density fitting (DF), the continuous fast multipole method (CFMM), and, more recently, hierarchical matrices. We apply the H2 hierarchical matrix representation to the ERI tensor with Gaussian basis sets to rapidly calculate the Coulomb matrices in Hartree-Fock and density functional theory calculations. The execution time and storage requirements of the hierarchical matrix approach and the DF approach are compared. The hierarchical matrix approach has very modest storage requirements, allowing large calculations to be performed in memory without recomputing ERIs. We interpret the hierarchical matrix approach as a multilevel, localized DF method and also discuss the close relationship between the hierarchical matrix approaches with CFMM. Like CFMM, the hierarchical matrix approach is asymptotically linear scaling, but the latter requires severalfold less memory (or severalfold less computation, if quantities are computed dynamically) due to being able to efficiently employ low-rank approximations for far more blocks.The harmonic angle bending potential is used in many force fields for (bio)molecular simulation. The force associated with this potential is discontinuous at angles close to 180°, which can lead to numeric instabilities. find more Angle bending of linear groups, such as alkynes or nitriles, or linear molecules, such as carbon dioxide, can be treated by a simple harmonic potential if we describe the fluctuations as a deviation from a reference position of the central atom, the position of which is determined by the flanking atoms. The force constant for the linear angle potential can be derived analytically from the corresponding force constant in the traditional potential. The new potential is tested on the properties of alkynes, nitriles, and carbon dioxide. We find that the angles of the linear groups remain about 2° closer to 180° using the new potential. The bond and angle force constants for carbon dioxide were tuned to reproduce the experimentally determined frequencies. An interesting finding was that simulations of liquid carbon dioxide under pressure with the new flexible model were stable only when explicitly modeling the long-range Lennard-Jones (LJ) interactions due to the very long-range nature of the LJ interactions (>1.

Skip to toolbar