Activity

  • Broberg posted an update 7 months, 1 week ago

    The Pt@R1-ZSM-5-R2 amphiphilic catalysts fabricated through a one-step reduction of Pt nanoparticles present outstanding performances in the biphasic cascade synthesis of cinnamic acid, achieving a very high turnover frequency (TOF) of 978 h-1. The TOF values of the catalysts correspond well to the HLB(S) values of the R1-ZSM-5-R2 nanoreactors.In this study, by rationally designing the stimulus response of graphene quantum dot (GQD)-sensitized terbium/guanine monophosphate (Tb/GMP) infinite coordination polymer (ICP) nanoparticles, we have constructed a smartphone-based colorimetric assay with ratiometric fluorescence, which could be applied for the detection of acetylcholinesterase (AChE) and organophosphorus pesticides (OPs) directly. First, GQDs with abundant functional groups were chosen as the guest, which not only could be used as one of the signal readouts but also served as the antenna ligand to further sensitize the fluorescence of the host Tb/GMP. Upon being excited at 330 nm, the green fluorescence of the Tb/GMP host is highly enhanced, while the blue fluorescence of GQDs is suppressed due to the confinement of the ICP host. With the presence of thiocholine (TCh), an enzymatic product hydrolyzed from acetylthiocholine (ATCh) by AChE, the competitive coordination of Tb3+ between GMP and TCh results in the collapse of the ICP network and tvices.Graphene electrodes and deep eutectic solvents (DESs) are two emerging material systems that have individually shown highly promising properties in electrochemical applications. To date, however, it has not been tested whether the combination of graphene and DESs can yield synergistic effects in electrochemistry. We therefore study the electrochemical behavior of a defined graphene monolayer of centimeter-scale, which was produced by chemical vapor deposition and transferred onto insulating SiO2/Si supports, in the common DES choline chloride/ethylene glycol (12CE) under typical electrochemical conditions. We measure the graphene potential window in 12CE and estimate the apparent electron transfer kinetics of an outer-sphere redox couple. We further explore the applicability of the 12CE electrolyte to fabricate nanostructured metal (Zn) and metalloid (Ge) hybrids with graphene by electrodeposition. By comparing our graphene electrodes with common bulk glassy carbon electrodes, a key finding we make is that the two-dimensional nature of the graphene electrodes has a clear impact on DES-based electrochemistry. Thereby, we provide a first framework toward rational optimization of graphene-DES systems for electrochemical applications.Sluggish CO2 reduction on the cathodes of solid oxide electrolysis cells greatly affects electrolysis performance. However, there is no study systematically investigating the cathode functional layer (CFL), where the reduction occurs. Cathode supports equipped with fast gas diffusion channels were employed as a platform to investigate the CFL, including porosity, NiO/(Y2O3)0.08Zr0.92O2 (YSZ) ratio, and thickness. The porosity was adjusted by pore former content, and a higher porosity generated a higher electrolysis current density, while the porosity improvement is limited by the fabrication process. The three-dimensional microstructure of the CFL with different NiO/YSZ ratios was reconstructed by distance correlation functions to estimate three-phase boundary density, which can explain the optimal NiO/YSZ weight ratio of 6040 for CO2 electrolysis. Increasing CFL thickness can provide more active sites until the optimal thickness of 35 μm. Further increasing the thickness results in gas diffusion limitation. Based on the channeled cathode supports, the CFL was optimized according to CO2 electrolysis performance.Targeted alpha therapy, where highly cytotoxic doses are delivered to tumor cells while sparing surrounding healthy tissue, has emerged as a promising treatment against cancer. selleck chemical Radionuclide conjugation with targeting vectors and dose confinement, however, are still limiting factors for the widespread application of this therapy. In the current study, we developed multifunctional silica nanoconstructs for targeted alpha therapy that show targeting capabilities against breast cancer cells, cytotoxic responses at therapeutic dosages, and enhanced clearance. The silica nanoparticles were conjugated to transferrin, which promoted particle accumulation in cancerous cells, and 3,4,3-LI(1,2-HOPO), a chelator with high selectivity and binding affinity for f-block elements. High cytotoxic effects were observed when the nanoparticles were loaded with 225Ac, a clinically relevant radioisotope. Lastly, in vivo studies in mice showed that the administration of radionuclides with nanoparticles enhanced their excretion and minimized their deposition in bones. These results highlight the potential of multifunctional silica nanoparticles as delivery systems for targeted alpha therapy and offer insight into design rules for the development of new nanotherapeutic agents.Poor cycle and rate performance caused by volume effects and sluggish kinetics is the main bottleneck for most lithium-ion battery (LIB) anode materials run on the conversion reaction. Although nanostructure engineering has shown to be an effective method to reduce the undesirable volume effects, cycling instability usually remains in nanostructured electrodes owning to particle aggregation in discharge and loss of active materials in charge. Here, to make these kinds of materials practical, we have developed a structure of ultrafine MoO2 nanoparticles ( less then 3 nm) confined by a conductive carbon nanosheet matrix (MoO2/C). Instead of running on the conversion mechanism, the Li storage in the MoO2/C composite is through a two-step mechanism in discharge intercalation followed by the formation of metallic Li, acting as a hybrid host for both Li ion intercalation and metallic Li plating. The Li-storage mechanism has been revealed by in situ X-ray diffraction analysis and in situ scanning transmission electron microscopy with corresponding electron energy loss spectrum analysis, which explains the natural origin of such high capacity along with good cyclability. This unique MoO2/C structure exhibits an excellent discharge capacity (810 mAh g-1 at 200 mA g-1) and cyclability (75% capacity retention over 1000 cycles). The carbon sheet plays a vital role in both a conductive network and a structure supporter with a robust confining effect that keeps the size of MoO2 uniformly under 3 nm even after high-temperature calcination. Our finding provides insights for the design of next-generation LIB anode materials with high capacity and longevity.

Skip to toolbar