-
Tran posted an update 7 months, 1 week ago
Intravital microscopy, such as 2-photon microscopy, is now a mainstay in immunological research to visually characterize immune cell dynamics during homeostasis and pathogen infections. This approach has been especially beneficial in describing the complex process of host immune responses to parasitic infections in vivo, such as Leishmania. Human-parasite co-evolution has endowed parasites with multiple strategies to subvert host immunity in order to establish chronic infections and ensure human-to-human transmission. While much focus has been placed on viral and bacterial infections, intravital microscopy studies during parasitic infections have been comparatively sparse. In this review, we will discuss how in vivo microscopy has provided important insights into the generation of innate and adaptive immunity in various organs during parasitic infections, with a primary focus on Leishmania. We highlight how microscopy-based approaches may be key to providing mechanistic insights into Leishmania persistence in vivo and to devise strategies for better parasite control.
Chronic obstructive pulmonary disease (COPD) is a complex and persistent lung disease and lack of biomarkers. The aim of this study is to screen and verify effective biomarkers for medical practice.
Differential expressed genes analysis and weighted co-expression network analysis were used to explore potential biomarker. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene set enrichment analysis (GSEA) analysis were used to explore potential mechanism. CIBERSORTx website was used to evaluate tissue-infiltrating immune cells. Enzyme-linked immunosorbent assay (ELISA) was used to assess the concentrations of the Lp-PLA2 in serum.
Ten genes were selected
combined DEGs and WGCNA. Furthermore, PLA2G7 was choose based on validation from independent datasets. Immune infiltrate and enrichment analysis suggest PLA2G7 may regulate immune pathway
macrophages. Next, Lp-PLA2(coded by PLA2G7 gene) level was upregulated in COPD patients, increased along with The Global Average of COPD (GOLD) stage. In additional, Lp-PLA2 level was significant correlate with FEV1/FVC, BMI, FFMI, CAT score, mMRC score and 6MWD of COPD patients. Finally, the predictive efficiency of Lp-PLA2 level (AUC0.796) and derived nomogram model (AUC0.884) in exercise tolerance was notably superior to that of the sit-to-stand test and traditional clinical features.
Lp-PLA2 is a promising biomarker for COPD patients and is suitable for assessing exercise tolerance in clinical practice.
Lp-PLA2 is a promising biomarker for COPD patients and is suitable for assessing exercise tolerance in clinical practice.The pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has led to an extraordinary threat to the global healthcare system. click here This infection disease, named COVID-19, is characterized by a wide clinical spectrum, ranging from asymptomatic or mild upper respiratory tract illness to severe viral pneumonia with fulminant cytokine storm, which leads to respiratory failure. To improve patient outcomes, both the inhibition of viral replication and of the unwarranted excessive inflammatory response are crucial. Since no specific antiviral drug has been proven effective for the treatment of patients and the only upcoming promising agents are monoclonal antibodies, inexpensive, safe, and widely available treatments are urgently needed. A potential anti-inflammatory molecule to be evaluated, which possesses antiviral activities in several experimental models, is the polyphenol resveratrol. This compound has been shown to inhibit SARS-CoV-2 replication in human primary bronchial epithelial cell cultures and to downregulate several pathogenetic mechanisms involved in COVID-19 severity. The use of resveratrol in clinical practice is limited by the low bioavailability following oral administration, due to the pharmacokinetic and metabolic characteristics of the molecule. Therefore, topical administration through inhaled formulations could allow us to achieve sufficiently high concentrations of the compound in the airways, the entry route of SARS-CoV-2.Acute lung injury (ALI) is an intractable disorder associated with macrophages. This bibliometric analysis was applied to identify the characteristics of global scientific output, the hotspots, and frontiers about macrophages in ALI over the past 10 years. We retrieved publications published from 2011 to 2020 and their recorded information from Science Citation Index Expanded (SCI-expanded) of Web of Science Core Collection (WoSCC). Bibliometrix package was used to analyze bibliometric indicators, and the VOSviewer was used to visualize the trend and hotspots of researches on macrophages in ALI. Altogether, 2,632 original articles were reviewed, and the results showed that the annual number of publications (Np) concerning the role of macrophages in ALI kept increasing over the past 10 years. China produced the most papers, the number of citations (Nc) and H-index of the USA ranked first. Shanghai Jiaotong University and INT IMMUNOPHARMACOL were the most prolific affiliation and journal, respectively. Papers published by Matute-Bello G in 2011 had the highest local citation score (LCS). Recently, the keywords “NLRP3” and “extracellular vesicles” appeared most frequently. Besides, researches on COVID-19-induced ALI related to macrophages seemed to be the hotspot recently. This bibliometric study revealed that publications related to macrophages in ALI tend to increase continuously. China was a big producer and the USA was an influential country in this field. Most studies were mainly centered on basic researches in the past decade, and pathways associated with the regulatory role of macrophages in inhibiting and attenuating ALI have become the focus of attention in more recent studies. What is more, our bibliometric analysis showed that macrophages play an important role in COVID-19-induced ALI and may be a target for the treatment of COVID-19.
The prophylactic vaccination of COVID-19 mRNA vaccines is the first large-scale application of this kind in the human world. Over 1.8 million doses of the COVID-19 vaccine had been administered in the US until December 2020, and around 0.2% submitted AE reports to the Vaccine Adverse Event Reporting System (VAERS). This study aimed to evaluate the AEs following immunization (AEFIs) and analyze the potential associations based on the information from the VAERS database.
We searched the VAERS database recorded AEFIs after COVID-19 vaccines in December 2020. After data mapping, we summarized demographic and clinical features of reported cases. Fisher exact test was used to comparing the clinical characteristics among AE groups with an anaphylactic response, concerning neurological disorders anddeath.
VAERS reported 3,908 AEFIs of COVID-19 vaccines in December 2020. Most (79.68%) were reported after the first dose of the vaccine. Among the reported cases, we found that general disorders (48.80%), nervous system disorders (46.