Activity

  • Timmons posted an update 8 months, 4 weeks ago

    List order made a significant difference, with efficiency improving over the list and over the day for separate am and pm lists. When a patient was not on time to theatre, efficiency in both set up and finishing up metrics was significantly worse.

    A large proportion of theatre time was being spent on non-operative tasks, making staff activities potential targets for operating theatre improvement interventions. Motivation and team familiarity were identified as the major factors behind efficiently run operating theatres, supporting the use of regular operating teams and maintenance of a highly motivated workforce.

    A large proportion of theatre time was being spent on non-operative tasks, making staff activities potential targets for operating theatre improvement interventions. Motivation and team familiarity were identified as the major factors behind efficiently run operating theatres, supporting the use of regular operating teams and maintenance of a highly motivated workforce.

    Aims of this study are to elucidate the molecular mechanism of copper-improved thiacloprid (THI) degradation by Ensifer adhaerens TMX-23 and characterize copper resistance of this strain.

    Resting cells of E. adhaerens TMX-23 were used to degrade THI, with formation of THI amide and 98·31% of 0·59mmoll

    THI was degraded in 100min. The addition of copper improved the degradation of THI and showed little inhibitory effects on the growth of E. adhaerens TMX-23. E. adhaerens TMX-23 degraded THI to THI amide by nitrile hydratases (NhcA and NhpA). QPCR analysis indicated that the expression of nhpA was up-regulated in the presence of copper. E. adhaerens TMX-23 nitrile hydratases were purified, and enzyme assay of NhpA exhibited the highest NHase activity toward THI. The addition of copper activated the activity of NhcA. Soil degradation experiment indicated that E. adhaerens TMX-23 could quickly eliminate THI residual in copper-added soil.

    Copper improved THI degradation by E. adhaerens TMX-23 was attributed to the induced expression of nhpA and activated NhcA.

    This study broadens the investigation of regulatory mechanism of NHase expression and provided theoretical basis for using metal-resistant microbes to degrade pesticide in heavy metal co-contaminated environments.

    This study broadens the investigation of regulatory mechanism of NHase expression and provided theoretical basis for using metal-resistant microbes to degrade pesticide in heavy metal co-contaminated environments.Hierarchical self-assembly is one of the most effective approaches to fabricate nature-inspired materials with subtle nanostructures. We report a distinct hierarchical self-assembly process of molecular double brushes (MDBs) with each graft site carrying a poly(azobenzene-acrylate) (PAzo) chain and a poly(ethylene oxide) (PEO) chain. Asymmetric tapered worm (ATW) nanostructures with chain-end reactivity assembling from the azobenzene-derived MDBs serve as primary subunits to prepare branched supermicelles by increasing water content (Cw ) in THF/water. Various natural Antedon-shaped multiarm worm-like aggregates (MWAs) can be created via the particle-particle connection of ATWs. Intriguingly, the azobenzene moieties undergo trans-cis isomerization upon UV irradiation and further promote a morphology evolution of MWAs. Multiscale supermicelles comprised of starfish shapes with differing central body and arm morphologies (e.g., compare to the biological specimens Luidia ciliaris and Crossaster papposus) were prepared by manipulating irradiation time.Ultrafine gold nanoclusters (Au-NCs) are susceptible to migrate and aggregate, even in the porosity of many crystalline solids. N-heterocyclic carbenes (NHCs) are a class of structurally diverse ligands for the stabilization of Au-NCs in homogeneous chemistry, showing catalytic reactivity in CO2 activation. Atuveciclib chemical structure Herein, for the first time, we demonstrate a heterogeneous nucleation approach to stabilize ultrasmall and highly dispersed gold nanoclusters in an NHC-functionalized porous matrix. The sizes of gold nanoclusters are tunable from 1.3 nm to 1.8 nm based on the interpenetration of the metal-organic framework (MOF) topology. Control experiments using amine or imidazolium-functionalized MOFs afforded the aggregation of Au species. The resultant Au-NC@MOF composite exhibits a steady and excellent activity in photocatalytic CO2 reduction, superior to control mixtures without NHC-ligand stabilization. Mechanistic studies reveal the synergistic catalytic effect of MOFs and Au-NCs through the MOF-NHC-Au covalent-bonding bridges.We synthesized the first multifunctionalized phosphoinositide polyphosphate derivatives featuring a photo-removable protecting group (“cage”), a photo-crosslinkable diazirine group, and a terminal alkyne group useful for click chemistry. We demonstrate that the lipid derivatives readily enter cells. After photo-crosslinking, cell fixation and fluorescent tagging via click chemistry, we determined the intracellular location of the lipid derivatives before and after uncaging of the lipids. We find that there is rapid trafficking of PI(3,4)P2 and PI(3,4,5)P3 derivatives to the plasma membrane, opening the intriguing possibility that there is active transport of these lipids involved. We employed the photo-crosslinking and click chemistry functions to analyze the proteome of PI(3,4,5)P3 -binding proteins. From the latter, we validated by RNAi that the putative lipid binding proteins ATP11A and MPP6 are involved in the transport of PI(3,4,5)P3 to the plasma membrane.Fabricating covalent organic frameworks (COFs) membranes with tight structure, which can fully utilize well-defined framework structure and thus achieve superior conduction performance, remains a grand challenge. Herein, through molecular precursor engineering of COFs, we reported the fabrication of tight COFs membrane with the ever-reported highest hydroxide ion conductivity over 200 mS cm-1 at 80 °C, 100 % RH. Six quaternary ammonium-functionalized COFs were synthesized by assembling functional hydrazides and different aldehyde precursors. In an organic-aqueous reaction system, the impact of the aldehyde precursors with different size, electrophilicity and hydrophilicity on the reaction-diffusion process for fabricating COFs membranes was elucidated. Particularly, more hydrophilic aldehydes were prone to push the reaction zone from the interface region to the aqueous phase of the reaction system, the tight membranes were thus fabricated via phase-transfer polymerization process, conferring around 4-8 times the anion conductivity over the loose membranes via interfacial polymerization process.

Skip to toolbar