-
Bridges posted an update 7 months, 1 week ago
Enterobacteriaceae colony-forming units (CFU) counts were compared between vegetable types; (3) Results Beta-lactamase producing bacteria were observed on 7.9% of vegetables, with 5.5% displaying ESBL/AmpC phenotype and 2.4% identified as Carbapenemase producers. The most frequently detected β-lactamase genes were blaSHV (n = 4), followed by blaCTX-M and blaTEM (each with n = 3). Phenotypic antibiotic resistance analysis showed that 46% of isolates were multiple drug resistant, with aminoglycosides (38.5%) the most prevalent non-β-lactam resistance, followed by first-generation quinolones (38.5%). (4) Conclusions The present study has described for the first time the presence of β-lactamase producing Enterobacterales in fresh produce retailed in Romania.The lesser periwinkle Vinca minor accumulates numerous monoterpene indole alkaloids (MIAs) including the vasodilator vincamine. While the biosynthetic pathway of MIAs has been largely elucidated in other Apocynaceae such as Catharanthus roseus, the counterpart in V. minor remains mostly unknown, especially for reactions leading to MIAs specific to this plant. As a consequence, we generated a comprehensive V. minor transcriptome elaborated from eight distinct samples including roots, old and young leaves exposed to low or high light exposure conditions. This optimized resource exhibits an improved completeness compared to already published ones. Through homology-based searches using C. roseus genes as bait, we predicted candidate genes for all common steps of the MIA pathway as illustrated by the cloning of a tabersonine/vincadifformine 16-O-methyltransferase (Vm16OMT) isoform. The functional validation of this enzyme revealed its capacity of methylating 16-hydroxylated derivatives of tabersonine, vincadifformine and lochnericine with a Km 0.94 ± 0.06 µM for 16-hydroxytabersonine. Furthermore, by combining expression of fusions with yellow fluorescent proteins and interaction assays, we established that Vm16OMT is located in the cytosol and forms homodimers. Finally, a gene co-expression network was performed to identify candidate genes of the missing V. minor biosynthetic steps to guide MIA pathway elucidation.Background and objectives Sargassum miyabei Yendo, belonging to the family Sargassaceae, has been reported to have various biological effects such as anti-tyrosinase activity and anti-inflammation. However, the anti-obesity effect of Sargassum miyabei Yendo has not yet been reported. Materials and Methods The effects of Sargassum miyabei Yendo extract (SME) on 3T3-L1 adipocytes were screened by3-(4,5)-dimethylthiazo-2-yl-2,5-diphenyltetrazolium bromide (MTT), Oil red O staining, western blot, and Real-time reverse transcription polymerase chain reaction analyses. Results Here, we show that SME had potent 2,2′-azinobis-3-ehtlbezothiazoline-6-sulfonic acid radical decolorization (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant activity with half maximal inhibitory concentration (IC50) value of 0.2868 ± 0.011 mg/mL and 0.2941 ± 0.014 mg/mL, respectively. In addition, SME significantly suppressed lipid accumulation and differentiation of 3T3-L1 preadipocytes, as shown by Oil Red O staining results. SME attenuated the expression of adipogenic- and lipogenic-related genes such as peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT-enhancer-binding protein alpha (C/EBPα), CCAAT-enhancer-binding protein delta (C/EBPδ), adiponectin, adipose triglyceride lipase (ATGL), fatty acid synthase (FAS), hormone-sensitive lipase (HSL), and lipoprotein lipase (LPL). Conclusions These findings suggest that SME may have therapeutic implications for developing a new anti-obesity agent.In this paper, a COMSOL Multiphysics-based methodology is presented for evaluation of the microelectromechanical systems (MEMS) gyroscope. The established finite element analysis (FEA) model was successfully validated through a comparison with analytical and Matlab/Simulink analysis results. A simplified single-drive, 3-axis MEMS gyroscope was analyzed using a mode split approach, having a drive resonant frequency of 24,918 Hz, with the x-sense, y-sense, and z-sense being 25,625, 25,886, and 25,806 Hz, respectively. Drive-mode analysis was carried out and a maximum drive-displacement of 4.0 μm was computed for a 0.378 μN harmonic drive force. Mechanical sensitivity was computed at 2000 degrees per second (dps) input angular rate while the scale factor for roll, pitch, and yaw was computed to be 0.014, 0.011, and 0.013 nm/dps, respectively.Mycobacterium microti, a member of the Mycobacterium tuberculosis complex, was originally described as the cause of tuberculosis in wild rodents. However, in the last few years, an increasing number of cases have been reported in wildlife (wild boars and badgers) and livestock (goat and cattle) in the frame of bovine tuberculosis (bTB) surveillance program, demonstrating the risk of interference with bTB diagnosis in France. In 2019, we detected four cattle infected with M.microti, from three different herds in three different distant regions. For all these cases, ante-mortem diagnosis by the skin test (single intradermal comparative cervical tuberculin (SICCT)) was positive. Confirmation of M.microti infection was based on molecular tests, i.e., specific real-time PCR and spoligotyping. These results highlight a non-negligible risk of interference in the bTB diagnosis system and raise concern about the reliability of diagnostic tests used for bTB surveillance. The use of highly specific tests, like the interferon gamma test (IFN-γ) employed in France or new synthetic specific tuberculins for skin testing could alternatively be used to accurately identify M.bovis (or Mycobacterium caprae) infection at ante-mortem examination. At post-mortem diagnosis, the use of specific molecular tools should be considered to accurately distinguish pathogens within the MTBC and to avoid misleading bTB diagnosis.Vehicular ad hoc networks (VANETs) need to support the timely end-to-end transmissions of safety and non-safety messages. Medium access control (MAC) protocols can ensure fair and efficient sharing of channel resources among multiple vehicles for VANETs, which can provide timely packet transmissions and significantly improve road safety. In this paper, we review the standards of some countries for VANETs. SU056 in vivo Then, we divide the MAC protocols proposed for VANETs into single-channel MAC protocols and multi-channel MAC protocols according to the number of physical occupied spectrum resources. Both are further discussed based on their hierarchical structures, i.e., distributed and centralized structures. General design and optimization mechanisms of these commonly used MAC protocols for VANETs are reviewed. From the viewpoint of 7 aspects, we compare the advantages and disadvantages of these typical MAC protocols. Finally, we discuss the open issues to improve the MAC performance and future work on MAC design for VANETs.