-
Cruz posted an update 7 months, 1 week ago
Collectively, our findings provide significant insights into the mechanisms underlying regulation of organ size mediated by maize BZR1. Ultraviolet-B (UV-B) radiation promotes anthocyanin synthesis in many plants. Although several transcription factors promote anthocyanin synthesis in response to UV-B radiation, the underlying mechanism remains unclear. In this study, the MdWRKY72 transcription factor gene was isolated from the ‘Taishanzaoxia’ apple genome. Quantitative real-time PCR analyses revealed that the genes encoding enzymes and transcription factors involved in the anthocyanin synthesis pathway (MdANS, MdDFR, MdUFGT, and MdMYB1) were more highly expressed in MdWRKY72-overexpressing transgenic calli than in the wild-type ‘Orin’ apple calli. The results indicated that MdWRKY72 increases anthocyanin synthesis in transgenic calli exposed to UV-B radiation. The results of a gel shift assay and chromatin immunoprecipitation proved that MdWRKY72 promotes MdMYB1 expression indirectly by binding to a W-box element in the MdHY5 promoter and directly by binding to a W-box element in the MdMYB1 promoter. Thus, MdWRKY72 increases anthocyanin synthesis via direct and indirect mechanisms. These findings may be useful for elucidating the molecular mechanism underlying UV-B-induced anthocyanin synthesis mediated by MdWRKY72. The AP2/ERF (APETALA2/ethylene-responsive factor) family of transcription factors (TF) is involved in regulating biotic and abiotic stress responses in plants. To explore the role of AP2/ERFs in cold tolerance in woody plants, BpERF13 was cloned and characterized in Betula platyphylla (white birch), a species primarily found in Asia in temperate and boreal climates. Based on phylogenetic analysis, BpERF13 is a member of the IXb subfamily of ERFs. Using qRT-PCR, we found that BpERF13 was differentially expressed in different tissues, and its expression could be induced by cold treatment (4 °C). BpERF13 protein, fused with GFP, was exclusively localized to nuclei. To further assess the role of BpERF13 in cold tolerance, BpERF13 overexpression (OE) transgenic lines were generated in B. platyphylla and used for cold stress treatment and biochemical/physiological studies. BpERF13 overexpression lines had significantly increased tolerance to subfreezing treatment and reduced reactive oxygen species. Using a TF-centered yeast one-hybrid (Y1H) experimental system, we showed that BpERF13 could bind to LTRECOREATCOR15 and MYBCORE cis-elements to activate a reporter gene. ChIP-seq and ChIP-PCR experiments further demonstrated that BpERF13 bound to these cis-elements when present in the 5′ proximal regions of superoxide dismutase (SOD), peroxidase (POD), and C-repeat-binding factor (CBF) genes. qRT-PCR was employed to examine the expression levels of these genes in response to cold stress; SOD, POD, and CBF genes were significantly upregulated in BpERF13 transgenic lines compared to wild-type plants in response to cold stress. These results indicate that the transcription factor BpERF13 regulates physiological processes underlying cold tolerance in woody plants. The soil-born vascular disease Verticillium wilt, which is caused by fungal pathogen Verticillium dahliae, is a devastating disease of cotton worldwide. In the last decade, a large number of genes have been found to participate in cotton-V. dahliae interactions, but the detailed mechanisms of cotton resistance to V. dahliae remain unclear. Here, we functionally characterized MPK3, a MAPK gene from cotton. MPK3 was induced in the roots of both resistant and susceptible cotton cultivars by V. dahliae inoculation. Transgenic cotton and tobacco with constitutively higher GbMPK3 expression conferred higher V. this website dahliae susceptibility, while MPK3 knockdown in cotton has limited effect on cotton resistance to V. dahliae. Expression profiling revealed that SA-mediated defense pathway genes (WRKY70, PR1, and PR5) accumulated after V. dahliae inoculation in roots of both wild-type and transgenic cotton, and the expression levels of these genes were higher in GbMPK3-overexpressing plants than in wild-type plants, indicating that GbMPK3 upregulation may reduce plant resistance to V. dahliae through regulating salicylic acid signaling transduction. SnRK2 (sucrose non-fermenting 1-related protein kinases 2) protein kinase family involves in several abiotic stress response in plants. Although the regulatory mechanism of SnRK2 have been well demonstrated in Arabidopsis thaliana, their functions in rice are still largely unknown. Here, we report a SnRK2 family gene, OsSAPK8, can be strongly induced by abiotic stresses, including low-temperature, drought and high salt stress. The ossapk8 mutants showed lower tolerance to low-temperature, high salinity and drought stresses at the vegetative stages. Moreover, the expressions of marker genes for those abiotic stresses, e.g. OsDREB1, OsDREB2, OsNCED and OsRAB21, were downregulated in the ossapk8 mutants. We further confirmed that the yield was reduced in ossapk8 mutant lines compared with the wild type. Our results provide evidence for OsSAPK8 acting as a positive regulator in cold, drought, and salt stress responses. V.Polyamines (PAs) are small aliphatic amines with important regulatory activities in plants. Biotic stress results in changes in PA levels due to de novo synthesis and PA oxidation. In Arabidopsis thaliana five FAD-dependent polyamine oxidase enzymes (AtPAO1-5) participate in PA back-conversion and degradation. PAO activity generates H2O2, an important molecule involved in cell signaling, elongation, programmed cell death, and defense responses. In this work we analyzed the role of AtPAO genes in the Arabidopsis thaliana-Pseudomonas syringae pathosystem. AtPAO1 and AtPAO2 genes were transcriptionally up-regulated in infected plants. Atpao1-1 and Atpao2-1 single mutant lines displayed altered responses to Pseudomonas, and an increased susceptibility was found in the double mutant Atpao1-1 x Atpao2-1. These polyamine oxidases mutant lines showed disturbed contents of ROS (H2O2 and O2-) and altered activities of RBOH, CAT and SOD enzymes both in infected and control plants. In addition, changes in the expression levels of AtRBOHD, AtRBOHF, AtPRX33, and AtPRX34 genes were also noticed.