-
Thrane posted an update 7 months, 1 week ago
However, this risk even though being considered improbable, it cannot be “completely and definitely” discarded or ignored, particularly where the virus is spreading in the word. Some agencies indicated that in case some commodities and handlers are contaminated among the multiple people involved from the farm to the table, a cross-contamination may occur, and the risk of the contamination of food, food contact materials, and packaging from infected but asymptomatic workers should not be discarded even though considered “Very Low = meaning very rare but cannot be excluded.”Unfortunately, there is limited research on coronavirus survival of food products and also food processing. The knowledge of the physical and chemical characteristics of coronaviruses mostly comes from the study of SARS-CoV and MERS-CoV physical (i.e., thermal processing, chilling and freezing, microwave irradiation, ultraviolet light, gamma irradiation, high hydrostatic pressure) and chemical (acidification and use of common disinfectants in the food industry like chlorinated derivatives and ozone) are means which could be used to inactive the coronaviruses or reduce the infection. These methods can be applied individually or in combination to act better performance. Thermal processing is one of the most effective methods for inactive coronavirus. Heating at 75°C (15-60 min) and 65°C (1 min) was the best temperature for inactive SARS-CoV and MERS virus, respectively. Among irradiation methods (microwave, UV, and gamma), the most effective one is UVC rays. Moreover, the use of disinfectant like chlorinated deCoV-2. Probably, heating and UVC are the most effective approach to inactive SARS-CoV-2. Despite the findings of coronavirus inactivation which were here discussed, much research is still needed for the development of new approaches to overcome the coronavirus.Jezero crater is the landing site for the Mars 2020 Perseverance rover. The Noachian-aged crater has undergone several periods of fluvial and lacustrine activity and phyllosilicate- and carbonate-bearing rocks were formed and emplaced as a result. It also contains a portion of the regional Nili Fossae olivine-carbonate unit. In this work, we performed spectral mixture analysis of visible/near-infrared hyperspectral imagery over Jezero. We modeled carbonate abundances up to ∼35% and identified three distinct units containing different carbonate phases. Our work also shows that the olivine in Jezero is predominantly restricted to aeolian deposits overlying the carbonate rocks. The diversity of carbonate phases in Jezero points to multiple periods of carbonate formation under varying conditions.The understanding of earthquake physics is hindered by the poor knowledge of fault strength and temperature evolution during seismic slip. Experiments reproducing seismic velocity (∼1 m/s) allow us to measure both the evolution of fault strength and the associated temperature increase due to frictional heating. However, temperature measurements were performed with techniques having insufficient spatial and temporal resolution. Here we conduct high velocity friction experiments on Carrara marble rock samples sheared at 20 MPa normal stress, velocity of 0.3 and 6 m/s, and 20 m of total displacement. We measured the temperature evolution of the fault surface at the acquisition rate of 1 kHz and over a spatial resolution of ∼40 µm with an optical fiber conveying the infrared radiation to a two-color pyrometer. Temperatures up to 1,250°C and low coseismic fault shear strength are compatible with the activation of grain size dependent viscous creep.Geoenergy and geoengineering applications usually involve fluid injection into and production from fractured media. Accounting for fractures is important because of the strong poromechanical coupling that ties pore pressure changes and deformation. A possible approach to the problem uses equivalent porous media to reduce the computational cost and model complexity instead of explicitly including fractures in the models. We investigate the validity of this simplification by comparing these two approaches. Simulation results show that pore pressure distribution significantly differs between the two approaches even when both are calibrated to predict identical values at the injection and production wells. Additionally, changes in fracture stability are not well captured with the equivalent porous medium. We conclude that explicitly accounting for fractures in numerical models may be necessary under some circumstances to perform reliable coupled thermohydromechanical simulations, which could be used in conjunction with other tools for induced seismicity forecasting.We present the first investigation and quantification of the photoionization loss process to Mercury’s sodium exosphere from spacecraft and ground-based observations. We analyze plasma and neutral sodium measurements from NASA’s MESSENGER spacecraft and the THEMIS telescope. We find that the sodium ion (Na+) content and therefore the significance of photoionization varies with Mercury’s orbit around the Sun (i.e., true anomaly angle TAA). ALK inhibitor cancer Na+ production is affected by the neutral sodium solar-radiation acceleration loss process. More Na+ was measured on the inbound leg of Mercury’s orbit at 180°-360° TAA because less neutral sodium is lost downtail from radiation acceleration. Calculations using results from observations show that the photoionization loss process removes ∼1024 atoms/s from the sodium exosphere (maxima of 4 × 1024 atoms/s), showing that modeling efforts underestimate this loss process. This is an important result as it shows that photoionization is a significant loss process and larger than loss from radiation acceleration.Supraglacial debris affects glacier mass balance as a thin layer enhances surface melting, while a thick layer reduces it. While many glaciers are debris-covered, global glacier models do not account for debris because its thickness is unknown. We provide the first globally distributed debris thickness estimates using a novel approach combining sub-debris melt and surface temperature inversion methods. Results are evaluated against observations from 22 glaciers. We find the median global debris thickness is ∼0.15 ± 0.06 m. In all regions, the net effect of accounting for debris is a reduction in sub-debris melt, on average, by 37%, which can impact regional mass balance by up to 0.40 m water equivalent (w.e.) yr-1. We also find recent observations of similar thinning rates over debris-covered and clean ice glacier tongues is primarily due to differences in ice dynamics. Our results demonstrate the importance of accounting for debris in glacier modeling efforts.