-
Gustafsson posted an update 7 months, 1 week ago
keholders. Our findings can inform the future integration of digital tools into clinical care during and beyond the pandemic.
German Clinical Trials Register DRKS00016170; https//tinyurl.com/skz4wdk5.
German Clinical Trials Register DRKS00016170; https//tinyurl.com/skz4wdk5.
Health behavior is influenced by culture and social context. However, there are limited data evaluating the scope of these influences on COVID-19 response.
This study aimed to compare handwashing and social distancing practices in different countries and evaluate practice predictors using the health belief model (HBM).
From April 11 to May 1, 2020, we conducted an online, cross-sectional survey disseminated internationally via social media. click here Participants were adults aged 18 years or older from four different countries the United States, Mexico, Hong Kong (China), and Taiwan. Primary outcomes were self-reported handwashing and social distancing practices during COVID-19. Predictors included constructs of the HBM perceived susceptibility, perceived severity, perceived benefits, perceived barriers, self-efficacy, and cues to action. Associations of these constructs with behavioral outcomes were assessed by multivariable logistic regression.
We analyzed a total of 71,851 participants, with 3070 from the Unelf-efficacy was the strongest predictor for handwashing and social distancing. Policies that address relevant health beliefs can facilitate adoption of necessary actions for preventing COVID-19. Our findings may be explained by the timing of government policies, the number of cases reported in each country, individual beliefs, and cultural context.
Social media recruitment strategies can be used to reach a large audience during a pandemic. Self-efficacy was the strongest predictor for handwashing and social distancing. Policies that address relevant health beliefs can facilitate adoption of necessary actions for preventing COVID-19. Our findings may be explained by the timing of government policies, the number of cases reported in each country, individual beliefs, and cultural context.In this article, we propose a data-driven iterative learning control (ILC) framework for unknown nonlinear nonaffine repetitive discrete-time single-input-single-output systems by applying the dynamic linearization (DL) technique. The ILC law is constructed based on the equivalent DL expression of an unknown ideal learning controller in the iteration and time domains. The learning control gain vector is adaptively updated by using a Newton-type optimization method. The monotonic convergence on the tracking errors of the controlled plant is theoretically guaranteed with respect to the 2-norm under some conditions. In the proposed ILC framework, existing proportional, integral, and derivative type ILC, and high-order ILC can be considered as special cases. The proposed ILC framework is a pure data-driven ILC, that is, the ILC law is independent of the physical dynamics of the controlled plant, and the learning control gain updating algorithm is formulated using only the measured input-output data of the nonlinear system. The proposed ILC framework is effectively verified by two illustrative examples on a complicated unknown nonlinear system and on a linear time-varying system.The control of the coordinated expression of genes is primarily regulated by the interactions between transcription factors (TFs) and their DNA binding sites, which are an integral part of transcriptional regulatory networks. There are many computational tools focused on determining TF binding or unbinding to a DNA sequence. However, other tools focused on further determining the relative preference of such binding are needed. Here, we propose a regression model with deep learning, called SemanticBI, to predict intensities of TFDNA binding. SemanticBI is a convolutional neural network (CNN)recurrent neural network (RNN) architecture model that was trained on an ensemble of protein binding microarray data sets that covered multiple TFs. Using this approach, SemanticBI exhibited superior accuracy in predicting binding intensities compared to other popular methods. Moreover, SemanticBI uncovered vectorized sequence-oriented features using its CNN-RNN architecture, which is an abstract representation of the original DNA sequences. Additionally, the use of SemanticBI raises the question of whether motifs are necessary for computational models of TF binding. The online SemanticBI service can be accessed at http//qianglab.scst.suda.edu.cn/semantic/.Dropout and DropConnect are two techniques to facilitate the regularization of neural network models, having achieved the state-of-the-art results in several benchmarks. In this paper, to improve the generalization capability of spiking neural networks (SNNs), the two drop techniques are first applied to the state-of-the-art SpikeProp learning algorithm resulting in two improved learning algorithms called SPDO (SpikeProp with Dropout) and SPDC (SpikeProp with DropConnect). In view that a higher membrane potential of a biological neuron implies a higher probability of neural activation, three adaptive drop algorithms, SpikeProp with Adaptive Dropout (SPADO), SpikeProp with Adaptive DropConnect (SPADC), and SpikeProp with Group Adaptive Drop (SPGAD), are proposed by adaptively adjusting the keep probability for training SNNs. A convergence theorem for SPDC is proven under the assumptions of the bounded norm of connection weights and a finite number of equilibria. In addition, the five proposed algorithms are carried out in a collaborative neurodynamic optimization framework to improve the learning performance of SNNs. The experimental results on the four benchmark data sets demonstrate that the three adaptive algorithms converge faster than SpikeProp, SPDO, and SPDC, and the generalization errors of the five proposed algorithms are significantly smaller than that of SpikeProp. Furthermore, the experimental results also show that the five algorithms based on collaborative neurodynamic optimization can be improved in terms of several measures.Ensembles are a widely implemented approach in the machine learning community and their success is traditionally attributed to the diversity within the ensemble. Most of these approaches foster diversity in the ensemble by data sampling or by modifying the structure of the constituent models. Despite this, there is a family of ensemble models in which diversity is explicitly promoted in the error function of the individuals. The negative correlation learning (NCL) ensemble framework is probably the most well-known algorithm within this group of methods. This article analyzes NCL and reveals that the framework actually minimizes the combination of errors of the individuals of the ensemble instead of minimizing the residuals of the final ensemble. We propose a novel ensemble framework, named global negative correlation learning (GNCL), which focuses on the optimization of the global ensemble instead of the individual fitness of its components. An analytical solution for the parameters of base regressors based on the NCL framework and the global error function proposed is also provided under the assumption of fixed basis functions (although the general framework could also be instantiated for neural networks with nonfixed basis functions).